""" SDSS Moving Object Catalog -------------------------- This plot demonstrates how to fetch data from the SDSS Moving object catalog, and plot using a multicolor plot similar to that used in figures 3-4 of [1]_ References ~~~~~~~~~~ .. [1] Parker `et al.` 2008 http://adsabs.harvard.edu/abs/2008Icar..198..138P """ # Author: Jake VanderPlas # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np import matplotlib from matplotlib import pyplot as plt from astroML.datasets import fetch_moving_objects from astroML.plotting.tools import devectorize_axes def black_bg_subplot(*args, **kwargs): """Create a subplot with black background""" if int(matplotlib.__version__[0]) >= 2: kwargs['facecolor'] = 'k' else: kwargs['axisbg'] = 'k' ax = plt.subplot(*args, **kwargs) # set ticks and labels to white for spine in ax.spines.values(): spine.set_color('w') for tick in ax.xaxis.get_major_ticks() + ax.yaxis.get_major_ticks(): for child in tick.get_children(): child.set_color('w') return ax def compute_color(mag_a, mag_i, mag_z, a_crit=-0.1): """ Compute the scatter-plot color using code adapted from TCL source used in Parker 2008. """ # define the base color scalings R = np.ones_like(mag_i) G = 0.5 * 10 ** (-2 * (mag_i - mag_z - 0.01)) B = 1.5 * 10 ** (-8 * (mag_a + 0.0)) # enhance green beyond the a_crit cutoff i = np.where(mag_a < a_crit) G[i] += 10000 * (10 ** (-0.01 * (mag_a[i] - a_crit)) - 1) # normalize color of each point to its maximum component RGB = np.vstack([R, G, B]) RGB /= RGB.max(0) # return an array of RGB colors, which is shape (n_points, 3) return RGB.T #------------------------------------------------------------ # Fetch data and extract the desired quantities data = fetch_moving_objects(Parker2008_cuts=True) mag_a = data['mag_a'] mag_i = data['mag_i'] mag_z = data['mag_z'] a = data['aprime'] sini = data['sin_iprime'] # dither: magnitudes are recorded only to +/- 0.01 mag_a += -0.005 + 0.01 * np.random.random(size=mag_a.shape) mag_i += -0.005 + 0.01 * np.random.random(size=mag_i.shape) mag_z += -0.005 + 0.01 * np.random.random(size=mag_z.shape) # compute RGB color based on magnitudes color = compute_color(mag_a, mag_i, mag_z) #------------------------------------------------------------ # set up the plot # plot the color-magnitude plot fig = plt.figure(facecolor='k') ax = black_bg_subplot(111) ax.scatter(mag_a, mag_i - mag_z, c=color, s=1, lw=0) devectorize_axes(ax, dpi=400) ax.plot([0, 0], [-0.8, 0.6], '--w', lw=2) ax.plot([0, 0.4], [-0.15, -0.15], '--w', lw=2) ax.set_xlim(-0.3, 0.4) ax.set_ylim(-0.8, 0.6) ax.set_xlabel('a*', color='w') ax.set_ylabel('i-z', color='w') # plot the orbital parameters plot fig = plt.figure(facecolor='k') ax = black_bg_subplot(111) ax.scatter(a, sini, c=color, s=1, lw=0) devectorize_axes(ax, dpi=400) ax.plot([2.5, 2.5], [-0.02, 0.3], '--w') ax.plot([2.82, 2.82], [-0.02, 0.3], '--w') ax.set_xlim(2.0, 3.3) ax.set_ylim(-0.02, 0.3) ax.set_xlabel('a (AU)', color='w') ax.set_ylabel('sin(i)', color='w') # label the plot text_kwargs = dict(color='w', fontsize=14, transform=plt.gca().transAxes, ha='center', va='bottom') ax.text(0.25, 1.01, 'Inner', **text_kwargs) ax.text(0.53, 1.01, 'Mid', **text_kwargs) ax.text(0.83, 1.01, 'Outer', **text_kwargs) # Saving the black-background figure requires some extra arguments: #fig.savefig('moving_objects.png', # facecolor='black', # edgecolor='none') plt.show()