"""
Bayesian Block implementation
=============================
Dynamic programming algorithm for finding the optimal adaptive-width histogram.
Based on Scargle et al 2012 [1]_
References
----------
.. [1] http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
"""
import numpy as np
# TODO: implement other fitness functions from appendix B of Scargle 2012
from astroML.utils import deprecated
from astroML.utils.exceptions import AstroMLDeprecationWarning
@deprecated('0.4', alternative='astropy.stats.FitnessFunc',
warning_type=AstroMLDeprecationWarning)
class FitnessFunc:
"""Base class for fitness functions
Each fitness function class has the following:
- fitness(...) : compute fitness function.
Arguments accepted by fitness must be among [T_k, N_k, a_k, b_k, c_k]
- prior(N, Ntot) : compute prior on N given a total number of points Ntot
"""
def __init__(self, p0=0.05, gamma=None):
self.p0 = p0
self.gamma = gamma
def validate_input(self, t, x, sigma):
"""Check that input is valid"""
pass
def fitness(**kwargs):
raise NotImplementedError()
def prior(self, N, Ntot):
if self.gamma is None:
return self.p0_prior(N, Ntot)
else:
return self.gamma_prior(N, Ntot)
def p0_prior(self, N, Ntot):
# eq. 21 from Scargle 2012
return 4 - np.log(73.53 * self.p0 * (N ** -0.478))
def gamma_prior(self, N, Ntot):
"""Basic prior, parametrized by gamma (eq. 3 in Scargle 2012)"""
if self.gamma == 1:
return 0
else:
return (np.log(1 - self.gamma)
- np.log(1 - self.gamma ** (Ntot + 1))
+ N * np.log(self.gamma))
# the fitness_args property will return the list of arguments accepted by
# the method fitness(). This allows more efficient computation below.
@property
def args(self):
try:
# Python 2
return self.fitness.func_code.co_varnames[1:]
except AttributeError:
return self.fitness.__code__.co_varnames[1:]
@deprecated('0.4', alternative='astropy.stats.Events',
warning_type=AstroMLDeprecationWarning)
class Events(FitnessFunc):
"""Fitness for binned or unbinned events
Parameters
----------
p0 : float
False alarm probability, used to compute the prior on N
(see eq. 21 of Scargle 2012). Default prior is for p0 = 0.
gamma : float or None
If specified, then use this gamma to compute the general prior form,
p ~ gamma^N. If gamma is specified, p0 is ignored.
"""
def fitness(self, N_k, T_k):
# eq. 19 from Scargle 2012
return N_k * (np.log(N_k) - np.log(T_k))
def prior(self, N, Ntot):
if self.gamma is not None:
return self.gamma_prior(N, Ntot)
else:
# eq. 21 from Scargle 2012
return 4 - np.log(73.53 * self.p0 * (N ** -0.478))
@deprecated('0.4', alternative='astropy.stats.RegularEvents',
warning_type=AstroMLDeprecationWarning)
class RegularEvents(FitnessFunc):
"""Fitness for regular events
This is for data which has a fundamental "tick" length, so that all
measured values are multiples of this tick length. In each tick, there
are either zero or one counts.
Parameters
----------
dt : float
tick rate for data
gamma : float
specifies the prior on the number of bins: p ~ gamma^N
"""
def __init__(self, dt, p0=0.05, gamma=None):
self.dt = dt
self.p0 = p0
self.gamma = gamma
def validate_input(self, t, x, sigma):
unique_x = np.unique(x)
if list(unique_x) not in ([0], [1], [0, 1]):
raise ValueError("Regular events must have only 0 and 1 in x")
def fitness(self, T_k, N_k):
# Eq. 75 of Scargle 2012
M_k = T_k / self.dt
N_over_M = N_k * 1. / M_k
eps = 1E-8
if np.any(N_over_M > 1 + eps):
import warnings
warnings.warn('regular events: N/M > 1. '
'Is the time step correct?')
one_m_NM = 1 - N_over_M
N_over_M[N_over_M <= 0] = 1
one_m_NM[one_m_NM <= 0] = 1
return N_k * np.log(N_over_M) + (M_k - N_k) * np.log(one_m_NM)
@deprecated('0.4', alternative='astropy.stats.PointMeasures',
warning_type=AstroMLDeprecationWarning)
class PointMeasures(FitnessFunc):
"""Fitness for point measures
Parameters
----------
gamma : float
specifies the prior on the number of bins: p ~ gamma^N
if gamma is not specified, then a prior based on simulations
will be used (see sec 3.3 of Scargle 2012)
"""
def __init__(self, p0=None, gamma=None):
self.p0 = p0
self.gamma = gamma
def fitness(self, a_k, b_k):
# eq. 41 from Scargle 2012
return (b_k * b_k) / (4 * a_k)
def prior(self, N, Ntot):
if self.gamma is not None:
return self.gamma_prior(N, Ntot)
elif self.p0 is not None:
return self.p0_prior(N, Ntot)
else:
# eq. at end of sec 3.3 in Scargle 2012
return 1.32 + 0.577 * np.log10(N)
[docs]@deprecated('0.4', alternative='astropy.stats.bayesian_blocks',
warning_type=AstroMLDeprecationWarning)
def bayesian_blocks(t, x=None, sigma=None,
fitness='events', **kwargs):
"""Bayesian Blocks Implementation
This is a flexible implementation of the Bayesian Blocks algorithm
described in Scargle 2012 [1]_
Parameters
----------
t : array_like
data times (one dimensional, length N)
x : array_like (optional)
data values
sigma : array_like or float (optional)
data errors
fitness : str or object
the fitness function to use.
If a string, the following options are supported:
- 'events' : binned or unbinned event data
extra arguments are `p0`, which gives the false alarm probability
to compute the prior, or `gamma` which gives the slope of the
prior on the number of bins.
- 'regular_events' : non-overlapping events measured at multiples
of a fundamental tick rate, `dt`, which must be specified as an
additional argument. The prior can be specified through `gamma`,
which gives the slope of the prior on the number of bins.
- 'measures' : fitness for a measured sequence with Gaussian errors
The prior can be specified using `gamma`, which gives the slope
of the prior on the number of bins. If `gamma` is not specified,
then a simulation-derived prior will be used.
Alternatively, the fitness can be a user-specified object of
type derived from the FitnessFunc class.
Returns
-------
edges : ndarray
array containing the (N+1) bin edges
Examples
--------
Event data:
>>> t = np.random.normal(size=100)
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)
Event data with repeats:
>>> t = np.random.normal(size=100)
>>> t[80:] = t[:20]
>>> bins = bayesian_blocks(t, fitness='events', p0=0.01)
Regular event data:
>>> dt = 0.01
>>> t = dt * np.arange(1000)
>>> x = np.zeros(len(t))
>>> x[np.random.randint(0, len(t), int(len(t) / 10))] = 1
>>> bins = bayesian_blocks(t, x, fitness='regular_events', dt=dt, gamma=0.9)
Measured point data with errors:
>>> t = 100 * np.random.random(100)
>>> x = np.exp(-0.5 * (t - 50) ** 2)
>>> sigma = 0.1
>>> x_obs = np.random.normal(x, sigma)
>>> bins = bayesian_blocks(t, x=x_obs, fitness='measures')
References
----------
.. [1] Scargle, J `et al.` (2012)
http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
See Also
--------
astroML.plotting.hist : histogram plotting function which can make use
of bayesian blocks.
"""
# validate array input
t = np.asarray(t, dtype=float)
if x is not None:
x = np.asarray(x)
if sigma is not None:
sigma = np.asarray(sigma)
# verify the fitness function
if fitness == 'events':
if x is not None and np.any(x % 1 > 0):
raise ValueError("x must be integer counts for fitness='events'")
fitfunc = Events(**kwargs)
elif fitness == 'regular_events':
if x is not None and (np.any(x % 1 > 0) or np.any(x > 1)):
raise ValueError("x must be 0 or 1 for fitness='regular_events'")
fitfunc = RegularEvents(**kwargs)
elif fitness == 'measures':
if x is None:
raise ValueError("x must be specified for fitness='measures'")
fitfunc = PointMeasures(**kwargs)
else:
if not (hasattr(fitness, 'args') and
hasattr(fitness, 'fitness') and
hasattr(fitness, 'prior')):
raise ValueError("fitness not understood")
fitfunc = fitness
# find unique values of t
t = np.array(t, dtype=float)
assert t.ndim == 1
unq_t, unq_ind, unq_inv = np.unique(t, return_index=True,
return_inverse=True)
# if x is not specified, x will be counts at each time
if x is None:
if sigma is not None:
raise ValueError("If sigma is specified, x must be specified")
if len(unq_t) == len(t):
x = np.ones_like(t)
else:
x = np.bincount(unq_inv)
t = unq_t
sigma = 1
# if x is specified, then we need to sort t and x together
else:
x = np.asarray(x)
if len(t) != len(x):
raise ValueError("Size of t and x does not match")
if len(unq_t) != len(t):
raise ValueError("Repeated values in t not supported when "
"x is specified")
t = unq_t
x = x[unq_ind]
# verify the given sigma value
N = t.size
if sigma is not None:
sigma = np.asarray(sigma)
if sigma.shape not in [(), (1,), (N,)]:
raise ValueError('sigma does not match the shape of x')
else:
sigma = 1
# validate the input
fitfunc.validate_input(t, x, sigma)
# compute values needed for computation, below
if 'a_k' in fitfunc.args:
ak_raw = np.ones_like(x) / sigma / sigma
if 'b_k' in fitfunc.args:
bk_raw = x / sigma / sigma
if 'c_k' in fitfunc.args:
ck_raw = x * x / sigma / sigma
# create length-(N + 1) array of cell edges
edges = np.concatenate([t[:1],
0.5 * (t[1:] + t[:-1]),
t[-1:]])
block_length = t[-1] - edges
# arrays to store the best configuration
best = np.zeros(N, dtype=float)
last = np.zeros(N, dtype=int)
#-----------------------------------------------------------------
# Start with first data cell; add one cell at each iteration
#-----------------------------------------------------------------
for R in range(N):
# Compute fit_vec : fitness of putative last block (end at R)
kwds = {}
# T_k: width/duration of each block
if 'T_k' in fitfunc.args:
kwds['T_k'] = block_length[:R + 1] - block_length[R + 1]
# N_k: number of elements in each block
if 'N_k' in fitfunc.args:
kwds['N_k'] = np.cumsum(x[:R + 1][::-1])[::-1]
# a_k: eq. 31
if 'a_k' in fitfunc.args:
kwds['a_k'] = 0.5 * np.cumsum(ak_raw[:R + 1][::-1])[::-1]
# b_k: eq. 32
if 'b_k' in fitfunc.args:
kwds['b_k'] = - np.cumsum(bk_raw[:R + 1][::-1])[::-1]
# c_k: eq. 33
if 'c_k' in fitfunc.args:
kwds['c_k'] = 0.5 * np.cumsum(ck_raw[:R + 1][::-1])[::-1]
# evaluate fitness function
fit_vec = fitfunc.fitness(**kwds)
A_R = fit_vec - fitfunc.prior(R + 1, N)
A_R[1:] += best[:R]
i_max = np.argmax(A_R)
last[R] = i_max
best[R] = A_R[i_max]
#-----------------------------------------------------------------
# Now find changepoints by iteratively peeling off the last block
#-----------------------------------------------------------------
change_points = np.zeros(N, dtype=int)
i_cp = N
ind = N
while True:
i_cp -= 1
change_points[i_cp] = ind
if ind == 0:
break
ind = last[ind - 1]
change_points = change_points[i_cp:]
return edges[change_points]