Source code for astroML.density_estimation.density_estimation
"""
Tools for density estimation
See also:
- sklearn.mixture.gmm : gaussian mixture models
- sklearn.neighbors.KernelDensity : Kernel Density Estimation (version 0.14+)
- astroML.density_estimation.XDGMM : extreme deconvolution
- scipy.spatial.gaussian_kde : a gaussian KDE implementation
"""
import numpy as np
from scipy import special
from sklearn.neighbors import BallTree
def n_volume(r, n):
"""compute the n-volume of a sphere of radius r in n dimensions"""
return np.pi ** (0.5 * n) / special.gamma(0.5 * n + 1) * (r ** n)
[docs]class KNeighborsDensity:
"""K-neighbors density estimation
Parameters
----------
method : string
method to use. Must be one of ['simple'|'bayesian'] (see below)
n_neighbors : int
number of neighbors to use
Notes
-----
The two methods are as follows:
- simple:
The density at a point x is estimated by n(x) ~ k / r_k^n
- bayesian:
The density at a point x is estimated by n(x) ~ sum_{i=1}^k[1 / r_i^n].
See Also
--------
KDE : kernel density estimation
"""
[docs] def __init__(self, method='bayesian', n_neighbors=10):
if method not in ['simple', 'bayesian']:
raise ValueError("method = %s not recognized" % method)
self.n_neighbors = n_neighbors
self.method = method
def fit(self, X):
"""Train the K-neighbors density estimator
Parameters
----------
X : array_like
array of points to use to train the KDE. Shape is
(n_points, n_dim)
"""
self.X_ = np.atleast_2d(X)
if self.X_.ndim != 2:
raise ValueError('X must be two-dimensional')
self.bt_ = BallTree(self.X_)
return self
def eval(self, X):
"""Evaluate the kernel density estimation
Parameters
----------
X : array_like
array of points at which to evaluate the KDE. Shape is
(n_points, n_dim), where n_dim matches the dimension of
the training points.
Returns
-------
dens : ndarray
array of shape (n_points,) giving the density at each point.
The density will be normalized for metric='gaussian' or
metric='tophat', and will be unnormalized otherwise.
"""
X = np.atleast_2d(X)
if X.ndim != 2:
raise ValueError('X must be two-dimensional')
if X.shape[1] != self.X_.shape[1]:
raise ValueError('dimensions of X do not match training dimension')
dist, ind = self.bt_.query(X, self.n_neighbors, return_distance=True)
k = float(self.n_neighbors)
ndim = X.shape[1]
if self.method == 'simple':
return k / n_volume(dist[:, -1], ndim)
elif self.method == 'bayesian':
# XXX this may be wrong in more than 1 dimension!
return (k * (k + 1) * 0.5 / n_volume(1, ndim)
/ (dist ** ndim).sum(1))
else:
raise ValueError("Unrecognized method '%s'" % self.method)
return dens