Source code for astroML.resample
import numpy as np
import warnings
from sklearn.utils import check_random_state
[docs]def bootstrap(data, n_bootstraps, user_statistic, kwargs=None,
pass_indices=False, random_state=None):
"""Compute bootstraped statistics of a dataset.
Parameters
----------
data : array_like
An n-dimensional data array of size n_samples by n_attributes
n_bootstraps : integer
the number of bootstrap samples to compute. Note that internally,
two arrays of size (n_bootstraps, n_samples) will be allocated.
For very large numbers of bootstraps, this can cause memory issues.
user_statistic : function
The statistic to be computed. This should take an array of data
of size (n_bootstraps, n_samples) and return the row-wise statistics
of the data.
kwargs : dictionary (optional)
A dictionary of keyword arguments to be passed to the
user_statistic function.
pass_indices : boolean (optional)
if True, then the indices of the points rather than the points
themselves are passed to `user_statistic`
random_state: RandomState or an int seed (0 by default)
A random number generator instance
Returns
-------
distribution : ndarray
the bootstrapped distribution of statistics (length = n_bootstraps)
"""
# we don't set kwargs={} by default in the argument list, because using
# a mutable type as a default argument can lead to strange results
if kwargs is None:
kwargs = {}
rng = check_random_state(random_state)
data = np.asarray(data)
if data.ndim != 1:
n_samples = data.shape[0]
warnings.warn("bootstrap data are n-dimensional: assuming ordered n_samples by n_attributes")
else:
n_samples = data.size
# Generate random indices with repetition
ind = rng.randint(n_samples, size=(n_bootstraps, n_samples))
data = data[ind].reshape(-1, data[ind].shape[-1])
# Call the function
if pass_indices:
stat_bootstrap = user_statistic(ind, **kwargs)
else:
stat_bootstrap = user_statistic(data, **kwargs)
# compute the statistic on the data
return stat_bootstrap
[docs]def jackknife(data, user_statistic, kwargs=None,
return_raw_distribution=False, pass_indices=False):
"""Compute first-order jackknife statistics of the data.
Parameters
----------
data : array_like
A 1-dimensional data array of size n_samples
user_statistic : function
The statistic to be computed. This should take an array of data
of size (n_samples, n_samples - 1) and return an array of size
n_samples or tuple of arrays of size n_samples, representing the
row-wise statistics of the input.
kwargs : dictionary (optional)
A dictionary of keyword arguments to be passed to the
user_statistic function.
return_raw_distribution : boolean (optional)
if True, return the raw jackknife distribution. Be aware that
this distribution is not reflective of the true distribution:
it is simply an intermediate step in the jackknife calculation
pass_indices : boolean (optional)
if True, then the indices of the points rather than the points
themselves are passed to `user_statistic`
Returns
-------
mean, stdev : floats
The mean and standard deviation of the jackknifed distribution
raw_distribution : ndarray
Returned only if `return_raw_distribution` is True
The array containing the raw distribution (length n_samples)
Be aware that this distribution is not reflective of the true
distribution: it is simply an intermediate step in the jackknife
calculation
Notes
-----
This implementation is a leave-one-out jackknife.
Jackknife resampling is known to fail on rank-based statistics
(e.g. median, quartiles, etc.) It works well on smooth statistics
(e.g. mean, standard deviation, etc.)
"""
# we don't set kwargs={} by default in the argument list, because using
# a mutable type as a default argument can lead to strange results
if kwargs is None:
kwargs = {}
data = np.asarray(data)
n_samples = data.size
if data.ndim != 1:
raise ValueError("bootstrap expects 1-dimensional data")
# generate indices for the entire dataset, converting to row vector
ind0 = np.arange(n_samples)[np.newaxis, :]
# generate sets of indices where a single datapoint is left-out
ind = np.arange(n_samples, dtype=int)
ind = np.vstack([np.hstack((ind[:i], ind[i + 1:])) for i in ind])
# compute the statistic for the whole dataset
if pass_indices:
stat_data = user_statistic(ind0, **kwargs)
stat_jackknife = user_statistic(ind, **kwargs)
else:
stat_data = user_statistic(data[ind0], **kwargs)
stat_jackknife = user_statistic(data[ind], **kwargs)
# handle multiple statistics:
# if ndim=0, then the statistic is not operating on rows (error).
# if ndim=1, then it's a single statistic returned
# if ndim=2, then a tuple has been returned
stat_data = np.asarray(stat_data)
ndim = stat_data.ndim
if ndim == 0:
raise ValueError("user_statistic should return row-wise statistics")
stat_data = np.atleast_2d(stat_data).T
stat_jackknife = np.atleast_2d(stat_jackknife)
# compute the jackknife correction formula
delta_stat = (n_samples - 1) * (stat_data - stat_jackknife.mean(1))
stat_corrected = (stat_data + delta_stat)[0]
sigma_stat = np.sqrt(1. / n_samples / (n_samples + 1)
* np.sum((n_samples * stat_data - stat_corrected
- (n_samples - 1)
* stat_jackknife.T) ** 2, 0))
if return_raw_distribution:
results = tuple(zip(stat_corrected, sigma_stat, stat_jackknife))
else:
results = tuple(zip(stat_corrected, sigma_stat))
if ndim == 1:
return results[0]
else:
return results