"""
Statistics for astronomy
"""
import numpy as np
from scipy.stats.distributions import rv_continuous
[docs]def bivariate_normal(mu=[0, 0], sigma_1=1, sigma_2=1, alpha=0,
size=None, return_cov=False):
"""Sample points from a 2D normal distribution
Parameters
----------
mu : array-like (length 2)
The mean of the distribution
sigma_1 : float
The unrotated x-axis width
sigma_2 : float
The unrotated y-axis width
alpha : float
The rotation counter-clockwise about the origin
size : tuple of ints, optional
Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because
each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
If no shape is specified, a single (`N`-D) sample is returned.
return_cov : boolean, optional
If True, return the computed covariance matrix.
Returns
-------
out : ndarray
The drawn samples, of shape *size*, if that was provided. If not,
the shape is ``(N,)``.
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
value drawn from the distribution.
cov : ndarray
The 2x2 covariance matrix. Returned only if return_cov == True.
Notes
-----
This function works by computing a covariance matrix from the inputs,
and calling ``np.random.multivariate_normal()``. If the covariance
matrix is available, this function can be called directly.
"""
# compute covariance matrix
sigma_xx = ((sigma_1 * np.cos(alpha)) ** 2
+ (sigma_2 * np.sin(alpha)) ** 2)
sigma_yy = ((sigma_1 * np.sin(alpha)) ** 2
+ (sigma_2 * np.cos(alpha)) ** 2)
sigma_xy = (sigma_1 ** 2 - sigma_2 ** 2) * np.sin(alpha) * np.cos(alpha)
cov = np.array([[sigma_xx, sigma_xy],
[sigma_xy, sigma_yy]])
# draw points from the distribution
x = np.random.multivariate_normal(mu, cov, size)
if return_cov:
return x, cov
else:
return x
#----------------------------------------------------------------------
# Define some new distributions based on rv_continuous
class trunc_exp_gen(rv_continuous):
"""A truncated positive exponential continuous random variable.
The probability distribution is::
p(x) ~ exp(k * x) between a and b
= 0 otherwise
The arguments are (a, b, k)
%(before_notes)s
%(example)s
"""
def _argcheck(self, a, b, k):
self._const = k / (np.exp(k * b) - np.exp(k * a))
return (a != b) and not np.isinf(k)
def _pdf(self, x, a, b, k):
pdf = self._const * np.exp(k * x)
pdf[(x < a) | (x > b)] = 0
return pdf
def _rvs(self, a, b, k):
y = np.random.random(self._size)
return (1. / k) * np.log(1 + y * k / self._const)
trunc_exp = trunc_exp_gen(name="trunc_exp", shapes='a, b, k')
class linear_gen(rv_continuous):
"""A truncated positive exponential continuous random variable.
The probability distribution is::
p(x) ~ c * x + d between a and b
= 0 otherwise
The arguments are (a, b, c). d is set by the normalization
%(before_notes)s
%(example)s
"""
def _argcheck(self, a, b, c):
return (a != b) and not np.isinf(c)
def _pdf(self, x, a, b, c):
d = 1. / (b - a) - 0.5 * c * (b + a)
pdf = c * x + d
pdf[(x < a) | (x > b)] = 0
return pdf
def _rvs(self, a, b, c):
mu = 0.5 * (a + b)
W = (b - a)
x0 = 1. / c / W - mu
r = np.random.random(self._size)
return -x0 + np.sqrt(2. * r / c + a * a
+ 2. * a * x0 + x0 * x0)
linear = linear_gen(name="linear", shapes='a, b, c')