Source code for astroML.time_series.ACF
"""
Auto-correlation functions
"""
import numpy as np
from scipy import fftpack
from .periodogram import lomb_scargle
[docs]def ACF_scargle(t, y, dy, n_omega=2 ** 10, omega_max=100):
"""Compute the Auto-correlation function via Scargle's method
Parameters
----------
t : array_like
times of observation. Assumed to be in increasing order.
y : array_like
values of each observation. Should be same shape as t
dy : float or array_like
errors in each observation.
n_omega : int (optional)
number of angular frequencies at which to evaluate the periodogram
default is 2^10
omega_max : float (optional)
maximum value of omega at which to evaluate the periodogram
default is 100
Returns
-------
ACF, t : ndarrays
The auto-correlation function and associated times
"""
t = np.asarray(t)
y = np.asarray(y)
if y.shape != t.shape:
raise ValueError("shapes of t and y must match")
dy = np.asarray(dy) * np.ones(y.shape)
d_omega = omega_max * 1. / (n_omega + 1)
omega = d_omega * np.arange(1, n_omega + 1)
# recall that P(omega = 0) = (chi^2(0) - chi^2(0)) / chi^2(0)
# = 0
# compute P and shifted full-frequency array
P = lomb_scargle(t, y, dy, omega,
generalized=True)
P = np.concatenate([[0], P, P[-2::-1]])
# compute PW, the power of the window function
PW = lomb_scargle(t, np.ones(len(t)), dy, omega,
generalized=False, subtract_mean=False)
PW = np.concatenate([[0], PW, PW[-2::-1]])
# compute the inverse fourier transform of P and PW
rho = fftpack.ifft(P).real
rhoW = fftpack.ifft(PW).real
ACF = fftpack.fftshift(rho / rhoW) / np.sqrt(2)
N = len(ACF)
dt = 2 * np.pi / N / (omega[1] - omega[0])
t = dt * (np.arange(N) - N // 2)
return ACF, t
[docs]def ACF_EK(t, y, dy, bins=20):
"""Auto-correlation function via the Edelson-Krolik method
Parameters
----------
t : array_like
times of observation. Assumed to be in increasing order.
y : array_like
values of each observation. Should be same shape as t
dy : float or array_like
errors in each observation.
bins : int or array_like (optional)
if integer, the number of bins to use in the analysis.
if array, the (nbins + 1) bin edges.
Default is bins=20.
Returns
-------
ACF : ndarray
The auto-correlation function and associated times
err : ndarray
the error in the ACF
bins : ndarray
bin edges used in computation
"""
t = np.asarray(t)
y = np.asarray(y)
if y.shape != t.shape:
raise ValueError("shapes of t and y must match")
if t.ndim != 1:
raise ValueError("t should be a 1-dimensional array")
dy = np.asarray(dy) * np.ones(y.shape)
# compute mean and standard deviation of y
w = 1. / dy / dy
w /= w.sum()
mu = np.dot(w, y)
sigma = np.std(y, ddof=1)
dy2 = dy[:, None]
dt = t - t[:, None]
UDCF = ((y - mu) * (y - mu)[:, None] /
np.sqrt((sigma ** 2 - dy ** 2) *
(sigma ** 2 - dy2 ** 2)))
# determine binning
bins = np.asarray(bins)
if bins.size == 1:
dt_min = dt.min()
dt_max = dt.max()
bins = np.linspace(dt_min, dt_max + 1E-10, bins + 1)
ACF = np.zeros(len(bins) - 1)
M = np.zeros(len(bins) - 1)
for i in range(len(bins) - 1):
flag = (dt >= bins[i]) & (dt < bins[i + 1])
M[i] = flag.sum()
ACF[i] = np.sum(UDCF[flag])
ACF /= M
return ACF, np.sqrt(2. / M), bins