11.4.9. astroML.datasets.fetch_sdss_sspp¶
-
astroML.datasets.
fetch_sdss_sspp
(data_home=None, download_if_missing=True, cleaned=False)[source]¶ Loader for SDSS SEGUE Stellar Parameter Pipeline data
- Parameters
- data_homeoptional, default=None
Specify another download and cache folder for the datasets. By default all astroML data is stored in ‘~/astroML_data’.
- download_if_missingbool (optional) default=True
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site.
- cleanedbool (optional) default=False
if True, then return a cleaned catalog where objects with extreme values are removed.
- Returns
- datarecarray, shape = (327260,)
record array containing pipeline parameters
Notes
Here are the comments from the fits file header:
Imaging data and spectrum identifiers for a sample of 327,260 stars with SDSS spectra, selected as:
available SSPP parameters in SDSS Data Release 9 (SSPP rerun 122, file from Y.S. Lee)
14 < r < 21 (psf magnitudes, uncorrected for ISM extinction)
10 < u < 25 & 10 < z < 25 (same as above)
errors in ugriz well measured (>0) and <10
0 < u-g < 3 (all color cuts based on psf mags, dereddened)
-0.5 < g-r < 1.5 & -0.5 < r-i < 1.0 & -0.5 < i-z < 1.0
-200 < pmL < 200 & -200 < pmB < 200 (proper motion in mas/yr)
pmErr < 10 mas/yr (proper motion error)
1 < log(g) < 5
TeffErr < 300 K
Teff and TeffErr are given in Kelvin, radVel and radVelErr in km/s. (ZI, Feb 2012, ivezic@astro.washington.edu)
Examples
>>> from astroML.datasets import fetch_sdss_sspp >>> data = fetch_sdss_sspp() >>> # number of objects in dataset >>> data.shape (327260,) >>> # names of the first five columns >>> print(data.dtype.names[:5]) ('ra', 'dec', 'Ar', 'upsf', 'uErr') >>> # first RA value >>> print(data['ra'][:1]) [49.6275024] >>> # first DEC value >>> print(data['dec'][:1]) [-1.04175591]