11.2.1.1. astroML.density_estimation.histogram¶
-
astroML.density_estimation.
histogram
(a, bins=10, range=None, **kwargs)[source]¶ Deprecated since version 0.4: The histogram function is deprecated and may be removed in a future version. Use astropy.stats.histogram instead.
Enhanced histogram
This is a histogram function that enables the use of more sophisticated algorithms for determining bins. Aside from the bins argument allowing a string specified how bins are computed, the parameters are the same as numpy.histogram().
- Parameters
- aarray_like
array of data to be histogrammed
- binsint or list or str (optional)
If bins is a string, then it must be one of: ‘blocks’ : use bayesian blocks for dynamic bin widths ‘knuth’ : use Knuth’s rule to determine bins ‘scotts’ : use Scott’s rule to determine bins ‘freedman’ : use the Freedman-diaconis rule to determine bins
- rangetuple or None (optional)
the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max())
other keyword arguments are described in numpy.hist().
- Returns
- histarray
The values of the histogram. See normed and weights for a description of the possible semantics.
- bin_edgesarray of dtype float
Return the bin edges
(length(hist)+1)
.