Module: search#

class kbmod.search.DebugTimer#

Bases: pybind11_object

A simple timer used for consistent outputing of timing results in verbose mode. Timer automatically starts when it is created.

Parameters:
namestr

The name string of the timer. Used for ouput.

verbosebool

Output the timing information to the standard output.

Methods

read(self)

Read the timer duration as decimal seconds.

start(self)

Start (or restart) the timer.

stop(self)

Stop the timer.

read(self: kbmod.search.DebugTimer) float#

Read the timer duration as decimal seconds.

Returns:
durationfloat

The duration of the timer.

start(self: kbmod.search.DebugTimer) None#

Start (or restart) the timer. If verbose=True, the object outputs a message.

stop(self: kbmod.search.DebugTimer) None#

Stop the timer. If verbose=True, the object outputs the duration.

class kbmod.search.ImageStack#

Bases: pybind11_object

A class for storing a list of LayeredImages at different times.

Notes

The images are not required to be in sorted time order, but the first image is used for t=0.0 when computing zeroed times (which might make some times negative).

Methods

append_image(self, img[, force_move])

Appends a single LayeredImage to the back of the ImageStack.

build_zeroed_times(self)

Construct an array of time differentials between each image in the stack and the first image.

get_height(self)

Returns the height of the images in pixels.

get_images(self)

Returns a reference to the vector of LayeredImages.

get_npixels(self)

Returns the number of pixels per image.

get_obstime(self, arg0)

Returns a single image's observation time in MJD.

get_single_image(self, arg0)

Returns a single LayeredImage for a given index.

get_total_pixels(self)

Returns the total number of pixels in all the images.

get_width(self)

Returns the width of the images in pixels.

get_zeroed_time(self, arg0)

Returns a single image's observation time relative to that of the first image.

img_count(self)

Returns the number of images in the stack.

set_single_image(self, index, img[, force_move])

Sets a single LayeredImage for at a given index.

sort_by_time(self)

Sort the images in the ImageStack by their time.

append_image(self: kbmod.search.ImageStack, img: kbmod.search.LayeredImage, force_move: bool = False) None#

Appends a single LayeredImage to the back of the ImageStack.

Parameters:
imgLayeredImage

The new image.

force_movebool

Use move semantics. The input layered image is destroyed to avoid a copy of the LayeredImage.

Raises:
Raises a RuntimeError if the input image is the wrong size.
build_zeroed_times(self: kbmod.search.ImageStack) list[float]#

Construct an array of time differentials between each image in the stack and the first image. This can return negative times if the images are not sorted by time.

zeroed_time[i] = time[i] - time[0]

Returns:
zeroed_timeslist

A list of times starting at 0.0.

get_height(self: kbmod.search.ImageStack) int#

Returns the height of the images in pixels.

Returns:
npixelsint

The height of each image in pixels.

get_images(self: kbmod.search.ImageStack) list[kbmod.search.LayeredImage]#

Returns a reference to the vector of LayeredImages.

Returns:
imageslist

The reference to the vector of LayeredImages.

get_npixels(self: kbmod.search.ImageStack) int#

Returns the number of pixels per image.

Returns:
npixelsint

The number of pixels per image.

get_obstime(self: kbmod.search.ImageStack, arg0: SupportsInt) float#

Returns a single image’s observation time in MJD.

Parameters:
indexint

The index of the LayeredImage to retrieve.

Returns:
timedouble

The observation time (in UTC MJD).

Raises:
Raises a IndexError if the index is out of bounds.
get_single_image(self: kbmod.search.ImageStack, arg0: SupportsInt) kbmod.search.LayeredImage#

Returns a single LayeredImage for a given index.

Parameters:
indexint

The index of the LayeredImage to retrieve.

Returns:
LayeredImage
Raises:
Raises a IndexError if the index is out of bounds.
get_total_pixels(self: kbmod.search.ImageStack) int#

Returns the total number of pixels in all the images.

Returns:
npixelsint

The total number of pixels over all images.

get_width(self: kbmod.search.ImageStack) int#

Returns the width of the images in pixels.

Returns:
npixelsint

The width of each image in pixels.

get_zeroed_time(self: kbmod.search.ImageStack, arg0: SupportsInt) float#

Returns a single image’s observation time relative to that of the first image. This can return negative times if the images are not sorted by time.

zeroed_time[i] = time[i] - time[0]

Parameters:
indexint

The index of the LayeredImage to retrieve.

Returns:
timedouble

The zeroed observation time (in days).

Raises:
Raises a IndexError if the index is out of bounds.
img_count(self: kbmod.search.ImageStack) int#

Returns the number of images in the stack.

Returns:
img_countint

The number of images in the stack.

set_single_image(self: kbmod.search.ImageStack, index: SupportsInt, img: kbmod.search.LayeredImage, force_move: bool = False) None#

Sets a single LayeredImage for at a given index.

Parameters:
indexint

The index of the LayeredImage to set.

imgLayeredImage

The new image.

force_movebool

Use move semantics. The input layered image is destroyed to avoid a copy of the LayeredImage.

Raises:
Raises a IndexError if the index is out of bounds.
Raises a RuntimeError if the input image is the wrong size.
sort_by_time(self: kbmod.search.ImageStack) None#

Sort the images in the ImageStack by their time.

class kbmod.search.Index#

Bases: pybind11_object

Array index.

Index can be compared to tuples and cast to a NumPy structured array. Index will cast non-int types into an integer without rounding, i.e. without applying floor or ceil to round the value to the nearest integer.

Parameters:
iint

Row index.

jint

Column index.

Attributes:
i
j

Methods

to_yaml(self)

Returns a single YAML record.

to_yaml(self: kbmod.search.Index) str#

Returns a single YAML record.

class kbmod.search.LayeredImage#

Bases: pybind11_object

Creates a layered_image out of individual RawImage layers.

Parameters:
sciRawImage

The RawImage for the science layer.

varRawImage

The RawImage for the cariance layer.

mskRawImage

The RawImage for the mask layer.

psfnumpy.ndarray

The kernel of the PSF.

obstimefloat

The time of the image (in UTC MJD).

Raises:
RuntimeError:

If the science, variance and mask are not the same size.

Methods

apply_mask(self, arg0)

Applies the mask layer to each of the science and variance layers by checking whether the pixel in the mask layer is 0 (no masking) or non-zero (masked).

binarize_mask(self, arg0)

Convert the bitmask of flags into a single binary value of 1 for pixels that match one of the flags to use and 0 otherwise.

convolve_given_psf(self, arg0)

Convolves a given PSF with the science and variance layers (uses the PSF-squared for the variance).

convolve_psf(self)

Convolves the PSF stored within the LayeredImage with the science and variance layers (uses the PSF-squared for the variance).

generate_phi_image(self)

Generates the full phi image where the value of each pixel p in the resulting image is 1.0 / variance[p].

generate_psi_image(self)

Generates the full psi image where the value of each pixel p in the resulting image is science[p] / variance[p].

get_height(self)

Returns the image's height in pixels.

get_mask(self)

Returns the mask layer as a RawImage.

get_mask_array(self)

Returns the mask layer as an Image.

get_npixels(self)

Returns the image's total number of pixels.

get_obstime(self)

Get the image's observation time in UTC MJD.

get_psf(self)

Returns the PSF kernel.

get_science(self)

Returns the science layer as a RawImage.

get_science_array(self)

Returns the science layer as an Image.

get_variance(self)

Returns the variance layer as a RawImage.

get_variance_array(self)

Returns the variance layer as an Image.

get_width(self)

Returns the image's width in pixels.

mask_pixel(*args, **kwargs)

Overloaded function.

set_mask(self, arg0)

Returns the mask layer RawImage.

set_obstime(self, arg0)

Set the image's observation time in UTC MJD.

set_psf(self, arg0)

Sets the PSF kernel.

set_science(self, arg0)

Returns the science layer RawImage.

set_variance(self, arg0)

Returns the science layer RawImage.

apply_mask(self: kbmod.search.LayeredImage, arg0: SupportsInt) None#

Applies the mask layer to each of the science and variance layers by checking whether the pixel in the mask layer is 0 (no masking) or non-zero (masked). Applies all flags. To use a subset of flags call binarize_mask() first.

binarize_mask(self: kbmod.search.LayeredImage, arg0: SupportsInt) None#

Convert the bitmask of flags into a single binary value of 1 for pixels that match one of the flags to use and 0 otherwise. Modifies the mask layer in-place. Used to select which masking flags are applied.

Note: This is a no-op for masks that are already binary and it is safe to call this function multiple times.

Parameters:
flags_to_useint

The bit mask of mask flags to keep.

convolve_given_psf(self: kbmod.search.LayeredImage, arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) None#

Convolves a given PSF with the science and variance layers (uses the PSF-squared for the variance). Modifies the layers in place.

Parameters:
psfPSF

The PSF to use.

convolve_psf(self: kbmod.search.LayeredImage) None#

Convolves the PSF stored within the LayeredImage with the science and variance layers (uses the PSF-squared for the variance). Modifies the layers in place.

generate_phi_image(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Generates the full phi image where the value of each pixel p in the resulting image is 1.0 / variance[p]. To handle masked bits apply_mask() must be called before the phi image is generated. Otherwise, all pixels are used.

Convolves the resulting image with the square of the PSF.

Returns:
resultnumpy.ndarray

A numpy array the same shape as the input image.

generate_psi_image(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Generates the full psi image where the value of each pixel p in the resulting image is science[p] / variance[p]. To handle masked bits apply_mask() must be called before the psi image is generated. Otherwise, all pixels are used.

Convolves the resulting image with the PSF.

Returns:
resultnumpy.ndarray

A numpy array the same shape as the input image.

get_height(self: kbmod.search.LayeredImage) int#

Returns the image’s height in pixels.

get_mask(self: kbmod.search.LayeredImage) kbmod.search.RawImage#

Returns the mask layer as a RawImage.

get_mask_array(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Returns the mask layer as an Image.

get_npixels(self: kbmod.search.LayeredImage) int#

Returns the image’s total number of pixels.

get_obstime(self: kbmod.search.LayeredImage) float#

Get the image’s observation time in UTC MJD.

get_psf(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Returns the PSF kernel.

get_science(self: kbmod.search.LayeredImage) kbmod.search.RawImage#

Returns the science layer as a RawImage.

get_science_array(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Returns the science layer as an Image.

get_variance(self: kbmod.search.LayeredImage) kbmod.search.RawImage#

Returns the variance layer as a RawImage.

get_variance_array(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Returns the variance layer as an Image.

get_width(self: kbmod.search.LayeredImage) int#

Returns the image’s width in pixels.

mask_pixel(*args, **kwargs)#

Overloaded function.

  1. mask_pixel(self: kbmod.search.LayeredImage, arg0: kbmod.search.Index) -> None

Apply masking to a single pixel. Applies to all three layers so that it can be used before or after apply_mask().

Parameters:
iint

Row index.

jint

Col index.

2. mask_pixel(self: kbmod.search.LayeredImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None
set_mask(self: kbmod.search.LayeredImage, arg0: kbmod.search.RawImage) None#

Returns the mask layer RawImage.

set_obstime(self: kbmod.search.LayeredImage, arg0: SupportsFloat) None#

Set the image’s observation time in UTC MJD.

set_psf(self: kbmod.search.LayeredImage, arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) None#

Sets the PSF kernel.

set_science(self: kbmod.search.LayeredImage, arg0: kbmod.search.RawImage) None#

Returns the science layer RawImage.

set_variance(self: kbmod.search.LayeredImage, arg0: kbmod.search.RawImage) None#

Returns the science layer RawImage.

class kbmod.search.Point#

Bases: pybind11_object

A point in Cartesian plane.

Point can be compared to tuples and cast to a NumPy structured array.

Parameters:
xfloat

Row index.

yfloat

Column index.

Attributes:
x
y

Methods

to_index(self)

Returns the Index this point is located in.

to_yaml(self)

Returns a single YAML record.

to_index(self: kbmod.search.Point) kbmod.search.Index#

Returns the Index this point is located in.

to_yaml(self: kbmod.search.Point) str#

Returns a single YAML record.

class kbmod.search.PsiPhi#

Bases: pybind11_object

A named tuple for psi and phi values.

Attributes:
psifloat

The psi value at a pixel.

phifloat

The phi value at a pixel.

class kbmod.search.PsiPhiArray#

Bases: pybind11_object

An encoded array of Psi and Phi values along with their meta data. This object supports automatic encoding of the psi/phi values (into float, uint8, or uint16) as well as the transfer of data to the GPU.

Attributes:
block_size

The size of a single entry in bytes.

cpu_array_allocated

A Boolean indicating whether the cpu data (psi/phi) array exists.

gpu_array_allocated

A Boolean indicating whether the gpu data (psi/phi) array exists.

height

The image height in pixels.

num_bytes

The target number of bytes to use for encoding the data (1 for uint8, 2 for uint16, or 4 for float32).

num_entries

The number of array entries (width x height x num_images).

num_times

The number of times.

on_gpu

A Boolean indicating whether a copy of the data is on the GPU.

phi_max_val

The maximum value of phi used in the scaling computations.

phi_min_val

The minimum value of phi used in the scaling computations.

phi_scale

The scaling parameter for phi.

pixels_per_image

The number of pixels per each image (width x height).

psi_max_val

The maximum value of psi used in the scaling computations.

psi_min_val

The minimum value of psi used in the scaling computations.

psi_scale

The scaling parameter for psi.

total_array_size

The size of the array in bytes.

width

The image width in pixels.

Methods

clear(self)

Clear all data and free the arrays.

clear_from_gpu(self)

Free the image and time data from the GPU memory.

move_to_gpu(self)

Move the image and time data to the GPU.

read_psi_phi(self, arg0, arg1, arg2)

Read a PsiPhi value from the CPU array.

read_time(self, arg0)

Read a zeroed time value from the CPU array.

set_meta_data(self, arg0, arg1, arg2, arg3)

Set the meta data for the array.

set_time_array(self, arg0)

Set the zeroed times.

property block_size#

The size of a single entry in bytes.

clear(self: kbmod.search.PsiPhiArray) None#

Clear all data and free the arrays.

clear_from_gpu(self: kbmod.search.PsiPhiArray) None#

Free the image and time data from the GPU memory. Does not copy the data back to the CPU.

Raises:
Raises a RuntimeError the data or settings are invalid.
property cpu_array_allocated#

A Boolean indicating whether the cpu data (psi/phi) array exists.

property gpu_array_allocated#

A Boolean indicating whether the gpu data (psi/phi) array exists.

property height#

The image height in pixels.

move_to_gpu(self: kbmod.search.PsiPhiArray) None#

Move the image and time data to the GPU. Allocates space and copies the data.

Raises:
Raises a RuntimeError if the data or settings are invalid.
property num_bytes#

The target number of bytes to use for encoding the data (1 for uint8, 2 for uint16, or 4 for float32). Might differ from actual number of bytes (block_size).

property num_entries#

The number of array entries (width x height x num_images).

property num_times#

The number of times. Equivalent to the number of images stored.

property on_gpu#

A Boolean indicating whether a copy of the data is on the GPU.

property phi_max_val#

The maximum value of phi used in the scaling computations.

property phi_min_val#

The minimum value of phi used in the scaling computations.

property phi_scale#

The scaling parameter for phi.

property pixels_per_image#

The number of pixels per each image (width x height).

property psi_max_val#

The maximum value of psi used in the scaling computations.

property psi_min_val#

The minimum value of psi used in the scaling computations.

property psi_scale#

The scaling parameter for psi.

read_psi_phi(self: kbmod.search.PsiPhiArray, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsInt) kbmod.search.PsiPhi#

Read a PsiPhi value from the CPU array. Performs automatic decoding of compressed data and returns the value as a float.

Parameters:
timeint

The timestep to read.

rowint

The row in the image (y-dimension)

colint

The column in the image (x-dimension)

Returns:
PsiPhi

The pixel values.

read_time(self: kbmod.search.PsiPhiArray, arg0: SupportsInt) float#

Read a zeroed time value from the CPU array.

Parameters:
timeint

The timestep to read.

Returns:
float

The time.

set_meta_data(self: kbmod.search.PsiPhiArray, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsInt, arg3: SupportsInt) None#

Set the meta data for the array. Automatically called by fill_psi_phi_array().

Parameters:
new_num_bytesint

The type of encoding to use (1, 2, or 4).

new_num_timesint

The number of time steps in the data.

new_heightint

The height of each image in pixels.

new_widthint

The width of each image in pixels.

set_time_array(self: kbmod.search.PsiPhiArray, arg0: list[SupportsFloat]) None#

Set the zeroed times.

Parameters:
timeslist

A list of float with zeroed times.

property total_array_size#

The size of the array in bytes.

property width#

The image width in pixels.

class kbmod.search.RawImage#

Bases: pybind11_object

Image and the time it was observed at.

Instantiated from an image or from image dimensions and and a value (which defaults to zero).

Parameters:
imagenumpy.array, optional

Image, row-major a 2D array. The array must be of dtype numpy.single.

widthint, optional

Width of the image in pixels.

heightint, optional

Height of the image in pixels.

valuefloat, optional

When instantiated from dimensions, value that fills the array. Default is 0.

Notes

RawImage is internally represented by an Eigen Matrix object that uses float type. Because of this the given numpy array must be of np.single dtype. This is on purpose since memory on a GPU comes at a premium. Tests determined that loss of precision does not greatly affect the search.

Note also that KBMOD uses (width, height) convention is opposite to the NumPy’ array.shape convention which uses (row, col). KBMOD also distinguishes between a pair of coordinates in Cartesian plane, i.e. a point, which, usually expressed with the (x, y) convention and a pair of values representing indices to a 2D matrix, usually expressed with the (i, j) convention. Pixel accessing or setting methods of RawImage, such as get_pixel, use the indexing convention. This matches NumPy convention. Other methods, such as add_fake_object, however, use the (x, y) convention which is the reversed NumPy convention. Refer to individual methods signature and docstring to see which one they use.

Examples

>>> from kbmod.search import RawImage
>>> import numpy as np
>>> ri = RawImage()
>>> ri = RawImage(w=2, h=3, value=1)
>>> ri.image
array([[1., 1.],
     [1., 1.],
     [1., 1.]], dtype=float32)
>>> ri = RawImage(np.zeros((2, 3), dtype=np.single), 10)
>>> ri.image
array([[0., 0., 0.],
     [0., 0., 0.]], dtype=float32)
Attributes:
heightint

Image height, in pixels.

widthint

Image width, in pixels.

npixelsint

Number of pixels in the image, equivalent to width*height.

imagenp.array[np,single]

Image array.

Methods

apply_mask(self, arg0, arg1)

Applies a mask to the RawImage by comparing the given bit vector with the values in the mask layer and marking pixels NO_DATA.

contains_index(*args, **kwargs)

Overloaded function.

contains_point(*args, **kwargs)

Overloaded function.

convolve(self, arg0)

Convolve the image with a PSF on the CPU or GPU depending on availability.

create_stamp(*args, **kwargs)

Overloaded function.

get_pixel(*args, **kwargs)

Overloaded function.

mask_pixel(*args, **kwargs)

Overloaded function.

pixel_has_data(*args, **kwargs)

Overloaded function.

replace_masked_values(self[, value])

Replace the masked values in an image with a given value.

set_all(self, arg0)

Sets all image pixel values to the given value.

set_pixel(*args, **kwargs)

Overloaded function.

apply_mask(self: kbmod.search.RawImage, arg0: SupportsInt, arg1: kbmod.search.RawImage) None#

Applies a mask to the RawImage by comparing the given bit vector with the values in the mask layer and marking pixels NO_DATA.

Modifies the image in-place.

Parameters:
flagint

The bit mask of mask flags to use. Use 0xFFFFFF to apply all flags.

maskRawImage

The image of pixel mask values.

contains_index(*args, **kwargs)#

Overloaded function.

  1. contains_index(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> bool

True if the given index falls within the image dimensions. Note that the x and y ordering is the inverse of contains_point().

Parameters:
iint

Row index (y position)

jint

Col index (x position)

Returns:
resultbool

True when point falls within the image dimensions.

  1. contains_index(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> bool
contains_point(*args, **kwargs)#

Overloaded function.

  1. contains_point(self: kbmod.search.RawImage, arg0: kbmod.search.Point) -> bool

True if the given point falls within the image dimensions. Note that the x and y ordering is the inverse of contains_index().

Parameters:
xfloat

The real valued x position (mapped to the matrix’s column).

yfloat

The real valued y position (mapped to the matrix’s row).

Returns:
resultbool

True when point falls within the image dimensions.

  1. contains_point(self: kbmod.search.RawImage, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat) -> bool
convolve(self: kbmod.search.RawImage, arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) None#

Convolve the image with a PSF on the CPU or GPU depending on availability.

Convolves in-place.

Parameters:
psfnumpy.ndarray

The kernel of the Point Spread Function.

create_stamp(*args, **kwargs)#

Overloaded function.

  1. create_stamp(self: kbmod.search.RawImage, arg0: kbmod.search.Point, arg1: typing.SupportsInt, arg2: bool) -> kbmod.search.RawImage

Create an image stamp around a given region.

Parameters:
xfloat

The x value of the center of the stamp.

yfloat

The y value of the center of the stamp.

radiusint

The stamp radius. Width = 2*radius+1.

keep_no_databool

A Boolean indicating whether to preserve NO_DATA tags or to replace them with 0.0.

Returns:
RawImage

The stamp.

  1. create_stamp(self: kbmod.search.RawImage, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsInt, arg3: bool) -> kbmod.search.RawImage
get_pixel(*args, **kwargs)#

Overloaded function.

  1. get_pixel(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> float

Get pixel at given index.

Parameters:
iint

Row index (y position)

jint

Col index (x position)

Returns:
valuefloat

Pixel value.

  1. get_pixel(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> float
mask_pixel(*args, **kwargs)#

Overloaded function.

  1. mask_pixel(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> None

Sets image pixel at an invalid value that indicates it is masked.

Parameters:
iint

Row index (y position)

jint

Col index (x position)

2. mask_pixel(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None
pixel_has_data(*args, **kwargs)#

Overloaded function.

  1. pixel_has_data(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> bool

True if the pixel at given index is not masked.

Parameters:
iint

Row index (y position)

jint

Col index (x position)

Returns:
has_databool

True when pixel is not masked, False otherwise.

  1. pixel_has_data(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> bool
replace_masked_values(self: kbmod.search.RawImage, value: SupportsFloat = 0.0) None#

Replace the masked values in an image with a given value.

Parameters:
valuefloat

The value to swap in. Default = 0.0.

set_all(self: kbmod.search.RawImage, arg0: SupportsFloat) None#

Sets all image pixel values to the given value.

Parameters:
valuefloat

Value to set the pixels to.

set_pixel(*args, **kwargs)#

Overloaded function.

  1. set_pixel(self: kbmod.search.RawImage, arg0: kbmod.search.Index, arg1: typing.SupportsFloat) -> None

Sets image pixel at given index to the given value.

Parameters:
iint

Row index (y position)

jint

Col index (x position)

valuefloat

Value to set the pixels to.

2. set_pixel(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat) -> None
class kbmod.search.Rectangle#

Bases: pybind11_object

A rectangular selection of an array.

The rectangle can also contain its corner origin Index with respect to a second reference point. Most commonly the corner of another, larger, rectangle - f.e. as is the case when selecting a stamp to copy from origin array and pasting the selection into a destination array.

Rectangles can be cast into NumPy structured arrays.

Parameters:
cornerIndex or tuple

Top left corner of the rectangle, in origin coordinates.

anchorIndex or tuple, optional

Top left corner of the rectangle, in destination coordinates.

widthint

Positive integer, width of the rectangle.

heightint

Positive integer, height of the rectangle.

Attributes:
iint

Row index of the corner.

jint

Column index of the corner.

Methods

to_yaml(self)

Returns a single YAML record.

to_yaml(self: kbmod.search.Rectangle) str#

Returns a single YAML record.

class kbmod.search.StackSearch#

Bases: pybind11_object

The data and configuration needed for KBMOD’s core search. It is created using a reference to the ImageStack. The underlying ImageStack must exist for the life of the StackSearch object’s life.

Methods

clear_psi_phi(self)

Clear the pre-computed psi and phi data.

clear_results(self)

Clear the saved results.

compute_max_results(self)

Compute the maximum number of results according to the x, y bounds and the results per pixel.

disable_gpu_sigmag_filter(self)

Turns off the on-GPU sigma-G filtering.

enable_gpu_encoding(self, arg0)

Set the encoding level for the data copied to the GPU.

enable_gpu_sigmag_filter(self, arg0, arg1, arg2)

Enable on-GPU sigma-G filtering.

evaluate_single_trajectory(self, arg0, arg1)

Performs the evaluation of a single Trajectory object.

get_all_psi_phi_curves(self, arg0)

Return a single matrix with both the psi and phi curves.

get_all_results(self)

Get a reference to the full list of results.

get_image_height(self)

Returns the height of the images in pixels.

get_image_npixels(self)

Returns the number of pixels for each image.

get_image_width(self)

Returns the width of the images in pixels.

get_imagestack(self)

Return the kb.ImageStack containing the data to search.

get_num_images(self)

Returns the number of images to process.

get_number_total_results(self)

Get the total number of saved results.

get_results(self, arg0, arg1)

Get a batch of cached results.

prepare_psi_phi(self)

Compute the cached psi and phi data.

search_all(self, arg0, arg1)

Perform the KBMOD search by evaluating a list of candidate trajectories at each starting pixel in the image.

search_linear_trajectory(self, arg0, arg1, ...)

Performs the evaluation of a linear trajectory in pixel space.

set_min_lh(self, arg0)

Sets the minimum likelihood for valid result.

set_min_obs(self, arg0)

Sets the minimum number of observations for valid result.

set_results(self, arg0)

Set the cached results.

set_results_per_pixel(self, arg0)

Set the maximum number of results per pixel returns by a search.

set_start_bounds_x(self, arg0, arg1)

Set the starting and ending bounds in the x direction for a grid search.

set_start_bounds_y(self, arg0, arg1)

Set the starting and ending bounds in the y direction for a grid search.

clear_psi_phi(self: kbmod.search.StackSearch) None#

Clear the pre-computed psi and phi data.

clear_results(self: kbmod.search.StackSearch) None#

Clear the saved results.

compute_max_results(self: kbmod.search.StackSearch) int#

Compute the maximum number of results according to the x, y bounds and the results per pixel.

Returns:
max_resultsint

The maximum number of results that a search will return.

disable_gpu_sigmag_filter(self: kbmod.search.StackSearch) None#

Turns off the on-GPU sigma-G filtering.

enable_gpu_encoding(self: kbmod.search.StackSearch, arg0: SupportsInt) None#
Set the encoding level for the data copied to the GPU.

1 = uint8 2 = uint16 4 or -1 = float

Parameters:
encode_num_bytesint

The number of bytes to use for encoding the data.

enable_gpu_sigmag_filter(self: kbmod.search.StackSearch, arg0: list[SupportsFloat], arg1: SupportsFloat, arg2: SupportsFloat) None#

Enable on-GPU sigma-G filtering.

Parameters:
percentileslist

A length 2 list of percentiles (between 0.0 and 1.0). Example [0.25, 0.75].

sigmag_coefffloat

The sigma-G coefficient corresponding to the percentiles. This can be computed via SigmaGClipping.find_sigma_g_coeff().

min_lhfloat

The minimum likelihood for a result to be accepted.

Raises:
Raises a RunTimeError if invalid values are provided.
evaluate_single_trajectory(self: kbmod.search.StackSearch, arg0: search::Trajectory, arg1: bool) None#

Performs the evaluation of a single Trajectory object. Modifies the trajectory object in-place to add the statistics.

Parameters:
trjkb.Trajectory

The trjactory to evaluate.

use_kernelbool

Use the kernel code for evaluation. This requires the code is compiled with the nvidia libraries, but performs the exact same computations as on GPU.

Notes

Runs on the CPU.

get_all_psi_phi_curves(self: kbmod.search.StackSearch, arg0: list[search::Trajectory]) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Return a single matrix with both the psi and phi curves. Each row corresponds to a single trajectory and the columns hold the psi values then the phi values (in order of time).

Parameters:
trjlist of kb.Trajectory

The input trajectories.

Returns:
resultnp.ndarray

A shape (R, 2T) matrix where R is the number of trajectories and T is the number of time steps. The first T columns contain the psi values and the second T columns contain the phi columns.

get_all_results(self: kbmod.search.StackSearch) list[search::Trajectory]#

Get a reference to the full list of results.

Returns:
resultsList

A list of Trajectory objects for the cached results.

get_image_height(self: kbmod.search.StackSearch) int#

Returns the height of the images in pixels.

get_image_npixels(self: kbmod.search.StackSearch) int#

Returns the number of pixels for each image.

get_image_width(self: kbmod.search.StackSearch) int#

Returns the width of the images in pixels.

get_imagestack(self: kbmod.search.StackSearch) kbmod.search.ImageStack#

Return the kb.ImageStack containing the data to search.

get_num_images(self: kbmod.search.StackSearch) int#

Returns the number of images to process.

get_number_total_results(self: kbmod.search.StackSearch) int#

Get the total number of saved results.

Returns:
resultint

The number of saved results.

get_results(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt) list[search::Trajectory]#

Get a batch of cached results.

Parameters:
startint

The starting index of the results to retrieve. Returns an empty list if start is past the end of the cache.

countint

The maximum number of results to retrieve. Returns fewer results if there are not enough in the cache.

Returns:
resultsList

A list of Trajectory objects for the cached results.

Raises:
RunTimeError if start < 0 or count <= 0.
prepare_psi_phi(self: kbmod.search.StackSearch) None#

Compute the cached psi and phi data.

search_all(self: kbmod.search.StackSearch, arg0: list[search::Trajectory], arg1: bool) None#

Perform the KBMOD search by evaluating a list of candidate trajectories at each starting pixel in the image. The results are stored in the StackSearch object and can be accessed with get_results().

Parameters:
search_listlist

A list of Trajectory objects where each trajectory is evaluated at each starting pixel.

on_gpubool

Run the search on the GPU.

search_linear_trajectory(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsFloat, arg3: SupportsFloat, arg4: bool) search::Trajectory#

Performs the evaluation of a linear trajectory in pixel space.

Parameters:
xshort

The starting x pixel of the trajectory.

yshort

The starting y pixel of the trajectory.

vxfloat

The x velocity of the trajectory in pixels per day.

vyfloat

The y velocity of the trajectory in pixels per day.

use_kernelbool

Use the kernel code for evaluation. This requires the code is compiled with the nvidia libraries, but performs the exact same computations as on GPU.

Returns:
resultkb.Trajectory

The trajectory object with statistics set.

Notes

Runs on the CPU, but requires CUDA compiler.

set_min_lh(self: kbmod.search.StackSearch, arg0: SupportsFloat) None#

Sets the minimum likelihood for valid result.

Parameters:
new_valuefloat

The minimum likelihood value for a trajectory to be returned.

set_min_obs(self: kbmod.search.StackSearch, arg0: SupportsInt) None#

Sets the minimum number of observations for valid result.

Parameters:
new_valueint

The minimum number of valid observations for a trajectory to be returned.

set_results(self: kbmod.search.StackSearch, arg0: list[search::Trajectory]) None#

Set the cached results. Used for testing.

Parameters:
new_resultsList

The list of results (Trajectory objects) to store.

set_results_per_pixel(self: kbmod.search.StackSearch, arg0: SupportsInt) None#

Set the maximum number of results per pixel returns by a search.

Parameters:
new_valueint

The new number of results per pixel.

Raises:
Raises a RunTimeError if an invalid value is provided (new_value <= 0).
set_start_bounds_x(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt) None#

Set the starting and ending bounds in the x direction for a grid search. The grid search will test all pixels [x_min, x_max).

Parameters:
x_minint

The inclusive lower bound of the search (in pixels).

x_maxint

The exclusive upper bound of the search (in pixels).

Raises:
Raises a RunTimeError if invalid bounds are provided (x_max > x_min).
set_start_bounds_y(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt) None#

Set the starting and ending bounds in the y direction for a grid search. The grid search will test all pixels [y_min, y_max).

Parameters:
y_minint

The inclusive lower bound of the search (in pixels).

y_maxint

The exclusive upper bound of the search (in pixels).

Raises:
Raises a RunTimeError if invalid bounds are provided (x_max > x_min).
class kbmod.search.StampType#

Bases: pybind11_object

Members:

STAMP_SUM

STAMP_MEAN

STAMP_MEDIAN

STAMP_VAR_WEIGHTED

Attributes:
name

name(self: object, /) -> str

value
property name#
class kbmod.search.Trajectory#

Bases: pybind11_object

A structure for holding basic information about potential results in the form of a linear trajectory in pixel space.

Attributes:
xfloat

x coordinate of the trajectory at first time step (in pixels)

yfloat

y coordinate of the trajectory at first time step (in pixels)

vxfloat

x component of the velocity, as projected on the image (in pixels per day)

vyfloat

y component of the velocity, as projected on the image (in pixels per day)

lhfloat

The computed likelihood of all (valid) points along the trajectory.

fluxfloat

The computed likelihood of all (valid) points along the trajectory.

obs_countint

The number of valid points along the trajectory.

Methods

get_x_index(self, arg0)

Returns the predicted x position of the trajectory as an integer (column) index.

get_x_pos(self, time[, centered])

Returns the predicted x position of the trajectory.

get_y_index(self, arg0)

Returns the predicted x position of the trajectory as an integer (row) index.

get_y_pos(self, time[, centered])

Returns the predicted y position of the trajectory.

is_close(self, arg0, arg1, arg2)

Checks whether a second Trajectory falls within given thresholds of closeness for pixel difference and velocity difference.

get_x_index(self: kbmod.search.Trajectory, arg0: SupportsFloat) int#

Returns the predicted x position of the trajectory as an integer (column) index.

Parameters:
timefloat

A zero shifted time in days.

Returns:
int

The predicted column index.

get_x_pos(self: kbmod.search.Trajectory, time: SupportsFloat, centered: bool = True) float#

Returns the predicted x position of the trajectory.

Parameters:
timefloat

A zero shifted time in days.

centeredbool

Shift the prediction to be at the center of the pixel (e.g. xp = x + vx * time + 0.5f). Default = True.

Returns:
float

The predicted x position (in pixels).

get_y_index(self: kbmod.search.Trajectory, arg0: SupportsFloat) int#

Returns the predicted x position of the trajectory as an integer (row) index.

Parameters:
timefloat

A zero shifted time in days.

Returns:
int

The predicted row index.

get_y_pos(self: kbmod.search.Trajectory, time: SupportsFloat, centered: bool = True) float#

Returns the predicted y position of the trajectory.

Parameters:
timefloat

A zero shifted time in days.

centeredbool

Shift the prediction to be at the center of the pixel (e.g. xp = x + vx * time + 0.5f). Default = True.

Returns:
float

The predicted y position (in pixels).

is_close(self: kbmod.search.Trajectory, arg0: kbmod.search.Trajectory, arg1: SupportsFloat, arg2: SupportsFloat) bool#

Checks whether a second Trajectory falls within given thresholds of closeness for pixel difference and velocity difference.

Parameters:
trj_bTrajectory

The Trajectory to test.

pos_threshfloat

The maximum separation in each of the x and y dimension (in pixels).

vel_threshfloat

The maximum separation in each of the x and y velocities (in pixels/day).

Returns:
bool

Whether the two trajectories are close.

class kbmod.search.TrajectoryList#

Bases: pybind11_object

A list of trajectories that can be transferred between CPU or GPU.

Attributes:
on_gpu

Whether the data currently resides on the GPU (True) or CPU (False)

Methods

estimate_memory(self)

Estimate the size of the list in bytes.

filter_by_likelihood(self, arg0)

Filter all trajectories with a likelihood above the given threshold.

filter_by_obs_count(self, arg0)

Filter all trajectories with an obs_count above the given threshold.

get_batch(self, arg0, arg1)

Return a batch of results.

get_list(self)

Return the full list of trajectories.

get_memory(self)

Return the size of the list in bytes.

get_size(self)

Return the size of the list in number of elements.

get_trajectory(self, arg0)

Get a reference trajectory from the list.

move_to_cpu(self)

Move the data from GPU to CPU.

move_to_gpu(self)

Move the data from CPU to GPU.

resize(self, arg0)

Forcibly resize the array.

set_trajectories(self, arg0)

Set an entire list of trajectories.

set_trajectory(self, arg0, arg1)

Set a trajectory in the list.

sort_by_likelihood(self)

Sort the data in order of decreasing likelihood.

estimate_memory(self: SupportsInt) int#

Estimate the size of the list in bytes.

Parameters:
num_elementsint

The number of elements that will be in the list.

Returns:
sizeint

The number of bytes needed for the list on CPU and GPU.

filter_by_likelihood(self: kbmod.search.TrajectoryList, arg0: SupportsFloat) None#

Filter all trajectories with a likelihood above the given threshold. Changes the order of the data and the size of the list. The data must reside on the CPU.

Parameters:
min_lhfloat

The minimum likelihood.

Raises:
Raises a RuntimeError the data is on GPU.
filter_by_obs_count(self: kbmod.search.TrajectoryList, arg0: SupportsInt) None#

Filter all trajectories with an obs_count above the given threshold. Changes the order of the data and the size of the list. The data must reside on the CPU.

Parameters:
min_obs_countint

The minimum obs_count.

Raises:
Raises a RuntimeError the data is on GPU.
get_batch(self: kbmod.search.TrajectoryList, arg0: SupportsInt, arg1: SupportsInt) list[kbmod.search.Trajectory]#

Return a batch of results. The data must reside on the CPU.

Parameters:
startint

The starting index of the results to retrieve. Returns an empty list if start is past the end of the cache.

countint

The maximum number of results to retrieve. Returns fewer results if there are not enough in the cache.

Returns:
resultsList

A list of Trajectory objects for the cached results.

Raises:
RunTimeError if start < 0 or count <= 0 or if the data is on GPU.
get_list(self: kbmod.search.TrajectoryList) list[kbmod.search.Trajectory]#

Return the full list of trajectories. The data must reside on the CPU.

Returns:
resultlist

The list of trajectories

Raises:
Raises a RuntimeError if the data currently resides on the GPU.
get_memory(self: kbmod.search.TrajectoryList) int#

Return the size of the list in bytes.

get_size(self: kbmod.search.TrajectoryList) int#

Return the size of the list in number of elements.

get_trajectory(self: kbmod.search.TrajectoryList, arg0: SupportsInt) kbmod.search.Trajectory#

Get a reference trajectory from the list. The data must reside on the CPU.

Parameters:
indexint

The index of the entry.

Returns:
trjTrajectory

The corresponding Trajectory object.

Raises:
Raises a RuntimeError if the index is invalid or the data currently resides
on the GPU.
move_to_cpu(self: kbmod.search.TrajectoryList) None#

Move the data from GPU to CPU. If the data is already on the CPU this is a no-op.

Raises:
Raises a RuntimeError if invalid state encountered.
move_to_gpu(self: kbmod.search.TrajectoryList) None#

Move the data from CPU to GPU. If the data is already on the GPU this is a no-op.

Raises:
Raises a RuntimeError if invalid state encountered.
property on_gpu#

Whether the data currently resides on the GPU (True) or CPU (False)

resize(self: kbmod.search.TrajectoryList, arg0: SupportsInt) None#

Forcibly resize the array. If the size is decreased, the extra entries are dropped from the back. If the size is increased, extra (blank) trajectories are added to the back.

The data must reside on the CPU.

Parameters:
new_sizeint

The new size of the list.

Raises:
RunTimeError if new_size < 0 or data is on GPU.
set_trajectories(self: kbmod.search.TrajectoryList, arg0: list[kbmod.search.Trajectory]) None#

Set an entire list of trajectories. Resizes the array to match the given input. The data must reside on the CPU.

Parameters:
new_valueslist

A list of Trajectory objects.

Raises:
Raises a RuntimeError if the index is invalid or the data currently resides
on the GPU.
set_trajectory(self: kbmod.search.TrajectoryList, arg0: SupportsInt, arg1: kbmod.search.Trajectory) None#

Set a trajectory in the list. The data must reside on the CPU.

Parameters:
indexint

The index of the entry.

new_valueTrajectory

The corresponding Trajectory object.

Raises:
Raises a RuntimeError if the index is invalid or the data currently resides
on the GPU.
sort_by_likelihood(self: kbmod.search.TrajectoryList) None#

Sort the data in order of decreasing likelihood. The data must reside on the CPU.

Raises:
Raises a RuntimeError the data is on GPU.
kbmod.search.anchored_block(arg0: tuple[SupportsInt, SupportsInt], arg1: SupportsInt, arg2: tuple[SupportsInt, SupportsInt]) kbmod.search.Rectangle#

Returns rectangle selection of an array centered on given coordinate.

Parameters:
idxtuple

Center of the rectangle selection, indices (row, col).

rint

Radius around the central index to select.

shapeint

Shape of the origin array.

Returns:
rectRectangle

Selected rectangle, such that the corner + width/height returns the desired array slice.

Examples

>>> img = numpy.arange(100).reshape(10, 10)
>>> rect = anchored_block((5, 5), 1, img.shape)
>>> rect
Rectangle(corner: (4, 4), anchor: (0, 0), width: 3, height: 3)
>>> stamp = img[rect.i:rect.i+rect.height, rect.j:rect.j+width]
>>> stamp
array([[44, 45, 46],
       [54, 55, 56],
       [64, 65, 66]])

By default, anchor is calculated such that it fits into a destination with a shape (2r+1, 2r+1), i.e. (rect.width, rect.height). Note the requested radius clips to the left and top of the array.

>>> dest = np.zeros((3, 3)) - 1
>>> rect = anchored_block((0, 0), 1, img.shape)
>>> dest[rect.anchor.i:, rect.anchor] = stamp
array([[-1., -1., -1.],
       [-1.,  0.,  1.],
       [-1., 10., 11.]])
kbmod.search.centered_range(arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsInt) tuple[int, int, int]#

Given a reference value and a radius around it, returns the range start, end and length that fit into the width of the interval.

The returned range is [val-r, val+r].

Parameters:
valint

Center of the returned range.

rint

Radius around the center to select.

widthint

Maximum allowed width of the interval.

Returns:
intervaltuple

The triplet (start, end, length) = [val-r, val+r, 2r+1] trimmed to fit within [0, width] range.

Examples

Interval of radius 1, centered on 5, i.e. [4, 5, 6]:

>>> centered_range(5, 1, 10)
(4, 6, 3)

Interval of radius 2, centered on 1, this time the allowed range [0, width] clips the returned range, i.e. [0, 1, 2, 3]

>>> centered_range(1, 2, 10)
(0, 3, 4)
kbmod.search.compute_scale_params_from_image_vect(arg0: list[Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']], arg1: SupportsInt) Annotated[list[float], FixedSize(3)]#
kbmod.search.convolve_image(arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]'], arg1: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Convolves the image (in place) with a PSF using a CPU if one is available and a GPU otherwise.

Parameters:
imagenumpy.ndarray

The image data as a two dimensional array.

psfnumpy.ndarray

The kernel of the Point Spread Function as a two dimensional array.

Returns:
resultnumpy.ndarray

The resulting image.

kbmod.search.convolve_image_cpu(arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]'], arg1: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Convolve the image with a PSF on the CPU.

Parameters:
imagenumpy.ndarray

The image data as a two dimensional array.

psfnumpy.ndarray

The kernel of the Point Spread Function as a two dimensional array.

Returns:
resultnumpy.ndarray

The resulting image.

kbmod.search.convolve_image_gpu(arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]'], arg1: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]']#

Convolve the image with a PSF on the GPU.

Parameters:
imagenumpy.ndarray

The image data as a two dimensional array.

psfnumpy.ndarray

The kernel of the Point Spread Function as a two dimensional array.

Returns:
resultnumpy.ndarray

The resulting image.

kbmod.search.decode_uint_scalar(arg0: SupportsFloat, arg1: SupportsFloat, arg2: SupportsFloat) float#
kbmod.search.encode_uint_scalar(arg0: SupportsFloat, arg1: SupportsFloat, arg2: SupportsFloat, arg3: SupportsFloat) float#
kbmod.search.evaluate_trajectory_cpu(arg0: search::PsiPhiArray, arg1: search::Trajectory) None#
kbmod.search.fill_psi_phi_array(arg0: kbmod.search.PsiPhiArray, arg1: SupportsInt, arg2: list[Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']], arg3: list[Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']], arg4: list[SupportsFloat]) None#

Fill the PsiPhiArray from Psi and Phi images.

Parameters:
result_dataPsiPhiArray

The location to store the data.

num_bytesint

The type of encoding to use (1, 2, or 4).

psi_imgslist

A list of psi images as numpy arrays.

phi_imgslist

A list of phi images as numpy arrays.

zeroed_timeslist

A list of floating point times starting at zero.

Raises:
Raises a RuntimeError if invalid values are found in the psi or phi arrays.
kbmod.search.fill_psi_phi_array_from_image_stack(arg0: kbmod.search.PsiPhiArray, arg1: kbmod.search.ImageStack, arg2: SupportsInt) None#

Fill the PsiPhiArray an ImageStack.

Parameters:
result_dataPsiPhiArray

The location to store the data.

num_bytesint

The type of encoding to use (1, 2, or 4).

stackImageStack

The stack of LayeredImages from which to build the psi and phi images.

Raises:
Raises a RuntimeError if invalid values are found.
kbmod.search.get_gpu_free_memory() int#

Return the GPUs free memory in bytes.

kbmod.search.get_gpu_total_memory() int#

Return the GPUs total memory in bytes.

kbmod.search.pixel_value_valid(arg0: SupportsFloat) bool#
kbmod.search.print_cuda_stats() None#

Display the basic GPU information to standard out.

kbmod.search.search_cpu_only(arg0: search::PsiPhiArray, arg1: search::SearchParameters, arg2: search::TrajectoryList, arg3: search::TrajectoryList) None#
kbmod.search.sigmag_filtered_indices(arg0: list[SupportsFloat], arg1: SupportsFloat, arg2: SupportsFloat, arg3: SupportsFloat, arg4: SupportsFloat) list[int]#
kbmod.search.stat_gpu_memory_mb() str#

Create a minimal GPU stats string for debugging.

kbmod.search.validate_gpu(req_memory: SupportsInt = 0) bool#

Check that a GPU is present, accessible, and has sufficient memory.

Parameters:
req_memoryint

The minimum free memory in bytes. Default: 0

Returns:
bool

Indicates whether the GPU is valid.