Module: search#
- class kbmod.search.DebugTimer#
Bases:
pybind11_object
A simple timer used for consistent outputing of timing results in verbose mode. Timer automatically starts when it is created.
- Parameters:
- namestr
The name string of the timer. Used for ouput.
- verbosebool
Output the timing information to the standard output.
Methods
read
(self)Read the timer duration as decimal seconds.
start
(self)Start (or restart) the timer.
stop
(self)Stop the timer.
- read(self: kbmod.search.DebugTimer) float #
Read the timer duration as decimal seconds.
- Returns:
- durationfloat
The duration of the timer.
- start(self: kbmod.search.DebugTimer) None #
Start (or restart) the timer. If verbose=True, the object outputs a message.
- stop(self: kbmod.search.DebugTimer) None #
Stop the timer. If verbose=True, the object outputs the duration.
- class kbmod.search.ImageStack#
Bases:
pybind11_object
A class for storing a list of LayeredImages at different times.
Notes
The images are not required to be in sorted time order, but the first image is used for t=0.0 when computing zeroed times (which might make some times negative).
Methods
append_image
(self, img[, force_move])Appends a single LayeredImage to the back of the ImageStack.
build_zeroed_times
(self)Construct an array of time differentials between each image in the stack and the first image.
get_height
(self)Returns the height of the images in pixels.
get_images
(self)Returns a reference to the vector of LayeredImages.
get_npixels
(self)Returns the number of pixels per image.
get_obstime
(self, arg0)Returns a single image's observation time in MJD.
get_single_image
(self, arg0)Returns a single LayeredImage for a given index.
get_total_pixels
(self)Returns the total number of pixels in all the images.
get_width
(self)Returns the width of the images in pixels.
get_zeroed_time
(self, arg0)Returns a single image's observation time relative to that of the first image.
img_count
(self)Returns the number of images in the stack.
set_single_image
(self, index, img[, force_move])Sets a single LayeredImage for at a given index.
sort_by_time
(self)Sort the images in the ImageStack by their time.
- append_image(self: kbmod.search.ImageStack, img: kbmod.search.LayeredImage, force_move: bool = False) None #
Appends a single LayeredImage to the back of the ImageStack.
- Parameters:
- imgLayeredImage
The new image.
- force_movebool
Use move semantics. The input layered image is destroyed to avoid a copy of the LayeredImage.
- Raises:
- Raises a
RuntimeError
if the input image is the wrong size.
- Raises a
- build_zeroed_times(self: kbmod.search.ImageStack) list[float] #
Construct an array of time differentials between each image in the stack and the first image. This can return negative times if the images are not sorted by time.
zeroed_time[i] = time[i] - time[0]
- Returns:
- zeroed_timeslist
A list of times starting at 0.0.
- get_height(self: kbmod.search.ImageStack) int #
Returns the height of the images in pixels.
- Returns:
- npixelsint
The height of each image in pixels.
- get_images(self: kbmod.search.ImageStack) list[kbmod.search.LayeredImage] #
Returns a reference to the vector of LayeredImages.
- Returns:
- imageslist
The reference to the vector of LayeredImages.
- get_npixels(self: kbmod.search.ImageStack) int #
Returns the number of pixels per image.
- Returns:
- npixelsint
The number of pixels per image.
- get_obstime(self: kbmod.search.ImageStack, arg0: SupportsInt) float #
Returns a single image’s observation time in MJD.
- Parameters:
- indexint
The index of the LayeredImage to retrieve.
- Returns:
- timedouble
The observation time (in UTC MJD).
- Raises:
- Raises a
IndexError
if the index is out of bounds.
- Raises a
- get_single_image(self: kbmod.search.ImageStack, arg0: SupportsInt) kbmod.search.LayeredImage #
Returns a single LayeredImage for a given index.
- Parameters:
- indexint
The index of the LayeredImage to retrieve.
- Returns:
- LayeredImage
- Raises:
- Raises a
IndexError
if the index is out of bounds.
- Raises a
- get_total_pixels(self: kbmod.search.ImageStack) int #
Returns the total number of pixels in all the images.
- Returns:
- npixelsint
The total number of pixels over all images.
- get_width(self: kbmod.search.ImageStack) int #
Returns the width of the images in pixels.
- Returns:
- npixelsint
The width of each image in pixels.
- get_zeroed_time(self: kbmod.search.ImageStack, arg0: SupportsInt) float #
Returns a single image’s observation time relative to that of the first image. This can return negative times if the images are not sorted by time.
zeroed_time[i] = time[i] - time[0]
- Parameters:
- indexint
The index of the LayeredImage to retrieve.
- Returns:
- timedouble
The zeroed observation time (in days).
- Raises:
- Raises a
IndexError
if the index is out of bounds.
- Raises a
- img_count(self: kbmod.search.ImageStack) int #
Returns the number of images in the stack.
- Returns:
- img_countint
The number of images in the stack.
- set_single_image(self: kbmod.search.ImageStack, index: SupportsInt, img: kbmod.search.LayeredImage, force_move: bool = False) None #
Sets a single LayeredImage for at a given index.
- Parameters:
- indexint
The index of the LayeredImage to set.
- imgLayeredImage
The new image.
- force_movebool
Use move semantics. The input layered image is destroyed to avoid a copy of the LayeredImage.
- Raises:
- Raises a
IndexError
if the index is out of bounds. - Raises a
RuntimeError
if the input image is the wrong size.
- Raises a
- sort_by_time(self: kbmod.search.ImageStack) None #
Sort the images in the ImageStack by their time.
- class kbmod.search.Index#
Bases:
pybind11_object
Array index.
Index can be compared to tuples and cast to a NumPy structured array. Index will cast non-int types into an integer without rounding, i.e. without applying
floor
orceil
to round the value to the nearest integer.- Parameters:
- iint
Row index.
- jint
Column index.
- Attributes:
- i
- j
Methods
to_yaml
(self)Returns a single YAML record.
- to_yaml(self: kbmod.search.Index) str #
Returns a single YAML record.
- class kbmod.search.LayeredImage#
Bases:
pybind11_object
Creates a layered_image out of individual RawImage layers.
- Parameters:
- sciRawImage
The RawImage for the science layer.
- varRawImage
The RawImage for the cariance layer.
- mskRawImage
The RawImage for the mask layer.
- psfnumpy.ndarray
The kernel of the PSF.
- obstimefloat
The time of the image (in UTC MJD).
- Raises:
- RuntimeError:
If the science, variance and mask are not the same size.
Methods
apply_mask
(self, arg0)Applies the mask layer to each of the science and variance layers by checking whether the pixel in the mask layer is 0 (no masking) or non-zero (masked).
binarize_mask
(self, arg0)Convert the bitmask of flags into a single binary value of 1 for pixels that match one of the flags to use and 0 otherwise.
convolve_given_psf
(self, arg0)Convolves a given PSF with the science and variance layers (uses the PSF-squared for the variance).
convolve_psf
(self)Convolves the PSF stored within the LayeredImage with the science and variance layers (uses the PSF-squared for the variance).
generate_phi_image
(self)Generates the full phi image where the value of each pixel p in the resulting image is 1.0 / variance[p].
generate_psi_image
(self)Generates the full psi image where the value of each pixel p in the resulting image is science[p] / variance[p].
get_height
(self)Returns the image's height in pixels.
get_mask
(self)Returns the mask layer as a RawImage.
get_mask_array
(self)Returns the mask layer as an Image.
get_npixels
(self)Returns the image's total number of pixels.
get_obstime
(self)Get the image's observation time in UTC MJD.
get_psf
(self)Returns the PSF kernel.
get_science
(self)Returns the science layer as a RawImage.
get_science_array
(self)Returns the science layer as an Image.
get_variance
(self)Returns the variance layer as a RawImage.
get_variance_array
(self)Returns the variance layer as an Image.
get_width
(self)Returns the image's width in pixels.
mask_pixel
(*args, **kwargs)Overloaded function.
set_mask
(self, arg0)Returns the mask layer RawImage.
set_obstime
(self, arg0)Set the image's observation time in UTC MJD.
set_psf
(self, arg0)Sets the PSF kernel.
set_science
(self, arg0)Returns the science layer RawImage.
set_variance
(self, arg0)Returns the science layer RawImage.
- apply_mask(self: kbmod.search.LayeredImage, arg0: SupportsInt) None #
Applies the mask layer to each of the science and variance layers by checking whether the pixel in the mask layer is 0 (no masking) or non-zero (masked). Applies all flags. To use a subset of flags call binarize_mask() first.
- binarize_mask(self: kbmod.search.LayeredImage, arg0: SupportsInt) None #
Convert the bitmask of flags into a single binary value of 1 for pixels that match one of the flags to use and 0 otherwise. Modifies the mask layer in-place. Used to select which masking flags are applied.
Note: This is a no-op for masks that are already binary and it is safe to call this function multiple times.
- Parameters:
- flags_to_useint
The bit mask of mask flags to keep.
- convolve_given_psf(self: kbmod.search.LayeredImage, arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) None #
Convolves a given PSF with the science and variance layers (uses the PSF-squared for the variance). Modifies the layers in place.
- Parameters:
- psfPSF
The PSF to use.
- convolve_psf(self: kbmod.search.LayeredImage) None #
Convolves the PSF stored within the LayeredImage with the science and variance layers (uses the PSF-squared for the variance). Modifies the layers in place.
- generate_phi_image(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Generates the full phi image where the value of each pixel p in the resulting image is 1.0 / variance[p]. To handle masked bits apply_mask() must be called before the phi image is generated. Otherwise, all pixels are used.
Convolves the resulting image with the square of the PSF.
- Returns:
- resultnumpy.ndarray
A numpy array the same shape as the input image.
- generate_psi_image(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Generates the full psi image where the value of each pixel p in the resulting image is science[p] / variance[p]. To handle masked bits apply_mask() must be called before the psi image is generated. Otherwise, all pixels are used.
Convolves the resulting image with the PSF.
- Returns:
- resultnumpy.ndarray
A numpy array the same shape as the input image.
- get_height(self: kbmod.search.LayeredImage) int #
Returns the image’s height in pixels.
- get_mask(self: kbmod.search.LayeredImage) kbmod.search.RawImage #
Returns the mask layer as a RawImage.
- get_mask_array(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Returns the mask layer as an Image.
- get_npixels(self: kbmod.search.LayeredImage) int #
Returns the image’s total number of pixels.
- get_obstime(self: kbmod.search.LayeredImage) float #
Get the image’s observation time in UTC MJD.
- get_psf(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Returns the PSF kernel.
- get_science(self: kbmod.search.LayeredImage) kbmod.search.RawImage #
Returns the science layer as a RawImage.
- get_science_array(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Returns the science layer as an Image.
- get_variance(self: kbmod.search.LayeredImage) kbmod.search.RawImage #
Returns the variance layer as a RawImage.
- get_variance_array(self: kbmod.search.LayeredImage) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Returns the variance layer as an Image.
- get_width(self: kbmod.search.LayeredImage) int #
Returns the image’s width in pixels.
- mask_pixel(*args, **kwargs)#
Overloaded function.
mask_pixel(self: kbmod.search.LayeredImage, arg0: kbmod.search.Index) -> None
Apply masking to a single pixel. Applies to all three layers so that it can be used before or after
apply_mask()
.- Parameters:
- iint
Row index.
- jint
Col index.
- 2. mask_pixel(self: kbmod.search.LayeredImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None
- set_mask(self: kbmod.search.LayeredImage, arg0: kbmod.search.RawImage) None #
Returns the mask layer RawImage.
- set_obstime(self: kbmod.search.LayeredImage, arg0: SupportsFloat) None #
Set the image’s observation time in UTC MJD.
- set_psf(self: kbmod.search.LayeredImage, arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) None #
Sets the PSF kernel.
- set_science(self: kbmod.search.LayeredImage, arg0: kbmod.search.RawImage) None #
Returns the science layer RawImage.
- set_variance(self: kbmod.search.LayeredImage, arg0: kbmod.search.RawImage) None #
Returns the science layer RawImage.
- class kbmod.search.Point#
Bases:
pybind11_object
A point in Cartesian plane.
Point can be compared to tuples and cast to a NumPy structured array.
- Parameters:
- xfloat
Row index.
- yfloat
Column index.
- Attributes:
- x
- y
Methods
to_index
(self)Returns the Index this point is located in.
to_yaml
(self)Returns a single YAML record.
- to_index(self: kbmod.search.Point) kbmod.search.Index #
Returns the Index this point is located in.
- to_yaml(self: kbmod.search.Point) str #
Returns a single YAML record.
- class kbmod.search.PsiPhi#
Bases:
pybind11_object
A named tuple for psi and phi values.
- Attributes:
- psifloat
The psi value at a pixel.
- phifloat
The phi value at a pixel.
- class kbmod.search.PsiPhiArray#
Bases:
pybind11_object
An encoded array of Psi and Phi values along with their meta data. This object supports automatic encoding of the psi/phi values (into float, uint8, or uint16) as well as the transfer of data to the GPU.
- Attributes:
block_size
The size of a single entry in bytes.
cpu_array_allocated
A Boolean indicating whether the cpu data (psi/phi) array exists.
gpu_array_allocated
A Boolean indicating whether the gpu data (psi/phi) array exists.
height
The image height in pixels.
num_bytes
The target number of bytes to use for encoding the data (1 for uint8, 2 for uint16, or 4 for float32).
num_entries
The number of array entries (width x height x num_images).
num_times
The number of times.
on_gpu
A Boolean indicating whether a copy of the data is on the GPU.
phi_max_val
The maximum value of phi used in the scaling computations.
phi_min_val
The minimum value of phi used in the scaling computations.
phi_scale
The scaling parameter for phi.
pixels_per_image
The number of pixels per each image (width x height).
psi_max_val
The maximum value of psi used in the scaling computations.
psi_min_val
The minimum value of psi used in the scaling computations.
psi_scale
The scaling parameter for psi.
total_array_size
The size of the array in bytes.
width
The image width in pixels.
Methods
clear
(self)Clear all data and free the arrays.
clear_from_gpu
(self)Free the image and time data from the GPU memory.
move_to_gpu
(self)Move the image and time data to the GPU.
read_psi_phi
(self, arg0, arg1, arg2)Read a PsiPhi value from the CPU array.
read_time
(self, arg0)Read a zeroed time value from the CPU array.
set_meta_data
(self, arg0, arg1, arg2, arg3)Set the meta data for the array.
set_time_array
(self, arg0)Set the zeroed times.
- property block_size#
The size of a single entry in bytes.
- clear(self: kbmod.search.PsiPhiArray) None #
Clear all data and free the arrays.
- clear_from_gpu(self: kbmod.search.PsiPhiArray) None #
Free the image and time data from the GPU memory. Does not copy the data back to the CPU.
- Raises:
- Raises a RuntimeError the data or settings are invalid.
- property cpu_array_allocated#
A Boolean indicating whether the cpu data (psi/phi) array exists.
- property gpu_array_allocated#
A Boolean indicating whether the gpu data (psi/phi) array exists.
- property height#
The image height in pixels.
- move_to_gpu(self: kbmod.search.PsiPhiArray) None #
Move the image and time data to the GPU. Allocates space and copies the data.
- Raises:
- Raises a RuntimeError if the data or settings are invalid.
- property num_bytes#
The target number of bytes to use for encoding the data (1 for uint8, 2 for uint16, or 4 for float32). Might differ from actual number of bytes (block_size).
- property num_entries#
The number of array entries (width x height x num_images).
- property num_times#
The number of times. Equivalent to the number of images stored.
- property on_gpu#
A Boolean indicating whether a copy of the data is on the GPU.
- property phi_max_val#
The maximum value of phi used in the scaling computations.
- property phi_min_val#
The minimum value of phi used in the scaling computations.
- property phi_scale#
The scaling parameter for phi.
- property pixels_per_image#
The number of pixels per each image (width x height).
- property psi_max_val#
The maximum value of psi used in the scaling computations.
- property psi_min_val#
The minimum value of psi used in the scaling computations.
- property psi_scale#
The scaling parameter for psi.
- read_psi_phi(self: kbmod.search.PsiPhiArray, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsInt) kbmod.search.PsiPhi #
Read a PsiPhi value from the CPU array. Performs automatic decoding of compressed data and returns the value as a float.
- Parameters:
- timeint
The timestep to read.
- rowint
The row in the image (y-dimension)
- colint
The column in the image (x-dimension)
- Returns:
- PsiPhi
The pixel values.
- read_time(self: kbmod.search.PsiPhiArray, arg0: SupportsInt) float #
Read a zeroed time value from the CPU array.
- Parameters:
- timeint
The timestep to read.
- Returns:
- float
The time.
- set_meta_data(self: kbmod.search.PsiPhiArray, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsInt, arg3: SupportsInt) None #
Set the meta data for the array. Automatically called by fill_psi_phi_array().
- Parameters:
- new_num_bytesint
The type of encoding to use (1, 2, or 4).
- new_num_timesint
The number of time steps in the data.
- new_heightint
The height of each image in pixels.
- new_widthint
The width of each image in pixels.
- set_time_array(self: kbmod.search.PsiPhiArray, arg0: list[SupportsFloat]) None #
Set the zeroed times.
- Parameters:
- timeslist
A list of float with zeroed times.
- property total_array_size#
The size of the array in bytes.
- property width#
The image width in pixels.
- class kbmod.search.RawImage#
Bases:
pybind11_object
Image and the time it was observed at.
Instantiated from an image or from image dimensions and and a value (which defaults to zero).
- Parameters:
- imagenumpy.array, optional
Image, row-major a 2D array. The array must be of dtype numpy.single.
- widthint, optional
Width of the image in pixels.
- heightint, optional
Height of the image in pixels.
- valuefloat, optional
When instantiated from dimensions, value that fills the array. Default is 0.
Notes
RawImage is internally represented by an Eigen Matrix object that uses
float
type. Because of this the given numpy array must be of np.single dtype. This is on purpose since memory on a GPU comes at a premium. Tests determined that loss of precision does not greatly affect the search.Note also that KBMOD uses
(width, height)
convention is opposite to the NumPy’ array.shape convention which uses (row, col). KBMOD also distinguishes between a pair of coordinates in Cartesian plane, i.e. a point, which, usually expressed with the(x, y)
convention and a pair of values representing indices to a 2D matrix, usually expressed with the(i, j)
convention. Pixel accessing or setting methods of RawImage, such as get_pixel, use the indexing convention. This matches NumPy convention. Other methods, such as add_fake_object, however, use the (x, y) convention which is the reversed NumPy convention. Refer to individual methods signature and docstring to see which one they use.Examples
>>> from kbmod.search import RawImage >>> import numpy as np >>> ri = RawImage() >>> ri = RawImage(w=2, h=3, value=1) >>> ri.image array([[1., 1.], [1., 1.], [1., 1.]], dtype=float32) >>> ri = RawImage(np.zeros((2, 3), dtype=np.single), 10) >>> ri.image array([[0., 0., 0.], [0., 0., 0.]], dtype=float32)
- Attributes:
- heightint
Image height, in pixels.
- widthint
Image width, in pixels.
- npixelsint
Number of pixels in the image, equivalent to
width*height
.- imagenp.array[np,single]
Image array.
Methods
apply_mask
(self, arg0, arg1)Applies a mask to the RawImage by comparing the given bit vector with the values in the mask layer and marking pixels
NO_DATA
.contains_index
(*args, **kwargs)Overloaded function.
contains_point
(*args, **kwargs)Overloaded function.
convolve
(self, arg0)Convolve the image with a PSF on the CPU or GPU depending on availability.
create_stamp
(*args, **kwargs)Overloaded function.
get_pixel
(*args, **kwargs)Overloaded function.
mask_pixel
(*args, **kwargs)Overloaded function.
pixel_has_data
(*args, **kwargs)Overloaded function.
replace_masked_values
(self[, value])Replace the masked values in an image with a given value.
set_all
(self, arg0)Sets all image pixel values to the given value.
set_pixel
(*args, **kwargs)Overloaded function.
- apply_mask(self: kbmod.search.RawImage, arg0: SupportsInt, arg1: kbmod.search.RawImage) None #
Applies a mask to the RawImage by comparing the given bit vector with the values in the mask layer and marking pixels
NO_DATA
.Modifies the image in-place.
- Parameters:
- flagint
The bit mask of mask flags to use. Use 0xFFFFFF to apply all flags.
- maskRawImage
The image of pixel mask values.
- contains_index(*args, **kwargs)#
Overloaded function.
contains_index(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> bool
True if the given index falls within the image dimensions. Note that the x and y ordering is the inverse of contains_point().
- Parameters:
- iint
Row index (y position)
- jint
Col index (x position)
- Returns:
- resultbool
True
when point falls within the image dimensions.
- contains_index(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> bool
- contains_point(*args, **kwargs)#
Overloaded function.
contains_point(self: kbmod.search.RawImage, arg0: kbmod.search.Point) -> bool
True if the given point falls within the image dimensions. Note that the x and y ordering is the inverse of contains_index().
- Parameters:
- xfloat
The real valued x position (mapped to the matrix’s column).
- yfloat
The real valued y position (mapped to the matrix’s row).
- Returns:
- resultbool
True
when point falls within the image dimensions.
- contains_point(self: kbmod.search.RawImage, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat) -> bool
- convolve(self: kbmod.search.RawImage, arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) None #
Convolve the image with a PSF on the CPU or GPU depending on availability.
Convolves in-place.
- Parameters:
- psfnumpy.ndarray
The kernel of the Point Spread Function.
- create_stamp(*args, **kwargs)#
Overloaded function.
create_stamp(self: kbmod.search.RawImage, arg0: kbmod.search.Point, arg1: typing.SupportsInt, arg2: bool) -> kbmod.search.RawImage
Create an image stamp around a given region.
- Parameters:
- xfloat
The x value of the center of the stamp.
- yfloat
The y value of the center of the stamp.
- radiusint
The stamp radius. Width = 2*radius+1.
- keep_no_databool
A Boolean indicating whether to preserve NO_DATA tags or to replace them with 0.0.
- Returns:
- RawImage
The stamp.
- create_stamp(self: kbmod.search.RawImage, arg0: typing.SupportsFloat, arg1: typing.SupportsFloat, arg2: typing.SupportsInt, arg3: bool) -> kbmod.search.RawImage
- get_pixel(*args, **kwargs)#
Overloaded function.
get_pixel(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> float
Get pixel at given index.
- Parameters:
- iint
Row index (y position)
- jint
Col index (x position)
- Returns:
- valuefloat
Pixel value.
- get_pixel(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> float
- mask_pixel(*args, **kwargs)#
Overloaded function.
mask_pixel(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> None
Sets image pixel at an invalid value that indicates it is masked.
- Parameters:
- iint
Row index (y position)
- jint
Col index (x position)
- 2. mask_pixel(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> None
- pixel_has_data(*args, **kwargs)#
Overloaded function.
pixel_has_data(self: kbmod.search.RawImage, arg0: kbmod.search.Index) -> bool
True if the pixel at given index is not masked.
- Parameters:
- iint
Row index (y position)
- jint
Col index (x position)
- Returns:
- has_databool
True when pixel is not masked, False otherwise.
- pixel_has_data(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt) -> bool
- replace_masked_values(self: kbmod.search.RawImage, value: SupportsFloat = 0.0) None #
Replace the masked values in an image with a given value.
- Parameters:
- valuefloat
The value to swap in. Default = 0.0.
- set_all(self: kbmod.search.RawImage, arg0: SupportsFloat) None #
Sets all image pixel values to the given value.
- Parameters:
- valuefloat
Value to set the pixels to.
- set_pixel(*args, **kwargs)#
Overloaded function.
set_pixel(self: kbmod.search.RawImage, arg0: kbmod.search.Index, arg1: typing.SupportsFloat) -> None
Sets image pixel at given index to the given value.
- Parameters:
- iint
Row index (y position)
- jint
Col index (x position)
- valuefloat
Value to set the pixels to.
- 2. set_pixel(self: kbmod.search.RawImage, arg0: typing.SupportsInt, arg1: typing.SupportsInt, arg2: typing.SupportsFloat) -> None
- class kbmod.search.Rectangle#
Bases:
pybind11_object
A rectangular selection of an array.
The rectangle can also contain its corner origin Index with respect to a second reference point. Most commonly the corner of another, larger, rectangle - f.e. as is the case when selecting a stamp to copy from origin array and pasting the selection into a destination array.
Rectangles can be cast into NumPy structured arrays.
- Parameters:
- cornerIndex or tuple
Top left corner of the rectangle, in origin coordinates.
- anchorIndex or tuple, optional
Top left corner of the rectangle, in destination coordinates.
- widthint
Positive integer, width of the rectangle.
- heightint
Positive integer, height of the rectangle.
- Attributes:
- iint
Row index of the corner.
- jint
Column index of the corner.
Methods
to_yaml
(self)Returns a single YAML record.
- to_yaml(self: kbmod.search.Rectangle) str #
Returns a single YAML record.
- class kbmod.search.StackSearch#
Bases:
pybind11_object
The data and configuration needed for KBMOD’s core search. It is created using a reference to the
ImageStack
. The underlyingImageStack
must exist for the life of theStackSearch
object’s life.Methods
clear_psi_phi
(self)Clear the pre-computed psi and phi data.
clear_results
(self)Clear the saved results.
compute_max_results
(self)Compute the maximum number of results according to the x, y bounds and the results per pixel.
Turns off the on-GPU sigma-G filtering.
enable_gpu_encoding
(self, arg0)Set the encoding level for the data copied to the GPU.
enable_gpu_sigmag_filter
(self, arg0, arg1, arg2)Enable on-GPU sigma-G filtering.
evaluate_single_trajectory
(self, arg0, arg1)Performs the evaluation of a single Trajectory object.
get_all_psi_phi_curves
(self, arg0)Return a single matrix with both the psi and phi curves.
get_all_results
(self)Get a reference to the full list of results.
get_image_height
(self)Returns the height of the images in pixels.
get_image_npixels
(self)Returns the number of pixels for each image.
get_image_width
(self)Returns the width of the images in pixels.
get_imagestack
(self)Return the kb.ImageStack containing the data to search.
get_num_images
(self)Returns the number of images to process.
get_number_total_results
(self)Get the total number of saved results.
get_results
(self, arg0, arg1)Get a batch of cached results.
prepare_psi_phi
(self)Compute the cached psi and phi data.
search_all
(self, arg0, arg1)Perform the KBMOD search by evaluating a list of candidate trajectories at each starting pixel in the image.
search_linear_trajectory
(self, arg0, arg1, ...)Performs the evaluation of a linear trajectory in pixel space.
set_min_lh
(self, arg0)Sets the minimum likelihood for valid result.
set_min_obs
(self, arg0)Sets the minimum number of observations for valid result.
set_results
(self, arg0)Set the cached results.
set_results_per_pixel
(self, arg0)Set the maximum number of results per pixel returns by a search.
set_start_bounds_x
(self, arg0, arg1)Set the starting and ending bounds in the x direction for a grid search.
set_start_bounds_y
(self, arg0, arg1)Set the starting and ending bounds in the y direction for a grid search.
- clear_psi_phi(self: kbmod.search.StackSearch) None #
Clear the pre-computed psi and phi data.
- clear_results(self: kbmod.search.StackSearch) None #
Clear the saved results.
- compute_max_results(self: kbmod.search.StackSearch) int #
Compute the maximum number of results according to the x, y bounds and the results per pixel.
- Returns:
- max_resultsint
The maximum number of results that a search will return.
- disable_gpu_sigmag_filter(self: kbmod.search.StackSearch) None #
Turns off the on-GPU sigma-G filtering.
- enable_gpu_encoding(self: kbmod.search.StackSearch, arg0: SupportsInt) None #
- Set the encoding level for the data copied to the GPU.
1 = uint8 2 = uint16 4 or -1 = float
- Parameters:
- encode_num_bytesint
The number of bytes to use for encoding the data.
- enable_gpu_sigmag_filter(self: kbmod.search.StackSearch, arg0: list[SupportsFloat], arg1: SupportsFloat, arg2: SupportsFloat) None #
Enable on-GPU sigma-G filtering.
- Parameters:
- percentileslist
A length 2 list of percentiles (between 0.0 and 1.0). Example [0.25, 0.75].
- sigmag_coefffloat
The sigma-G coefficient corresponding to the percentiles. This can be computed via SigmaGClipping.find_sigma_g_coeff().
- min_lhfloat
The minimum likelihood for a result to be accepted.
- Raises:
- Raises a
RunTimeError
if invalid values are provided.
- Raises a
- evaluate_single_trajectory(self: kbmod.search.StackSearch, arg0: search::Trajectory, arg1: bool) None #
Performs the evaluation of a single Trajectory object. Modifies the trajectory object in-place to add the statistics.
- Parameters:
- trjkb.Trajectory
The trjactory to evaluate.
- use_kernelbool
Use the kernel code for evaluation. This requires the code is compiled with the nvidia libraries, but performs the exact same computations as on GPU.
Notes
Runs on the CPU.
- get_all_psi_phi_curves(self: kbmod.search.StackSearch, arg0: list[search::Trajectory]) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Return a single matrix with both the psi and phi curves. Each row corresponds to a single trajectory and the columns hold the psi values then the phi values (in order of time).
- Parameters:
- trjlist of kb.Trajectory
The input trajectories.
- Returns:
- resultnp.ndarray
A shape (R, 2T) matrix where R is the number of trajectories and T is the number of time steps. The first T columns contain the psi values and the second T columns contain the phi columns.
- get_all_results(self: kbmod.search.StackSearch) list[search::Trajectory] #
Get a reference to the full list of results.
- Returns:
- resultsList
A list of
Trajectory
objects for the cached results.
- get_image_height(self: kbmod.search.StackSearch) int #
Returns the height of the images in pixels.
- get_image_npixels(self: kbmod.search.StackSearch) int #
Returns the number of pixels for each image.
- get_image_width(self: kbmod.search.StackSearch) int #
Returns the width of the images in pixels.
- get_imagestack(self: kbmod.search.StackSearch) kbmod.search.ImageStack #
Return the kb.ImageStack containing the data to search.
- get_num_images(self: kbmod.search.StackSearch) int #
Returns the number of images to process.
- get_number_total_results(self: kbmod.search.StackSearch) int #
Get the total number of saved results.
- Returns:
- resultint
The number of saved results.
- get_results(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt) list[search::Trajectory] #
Get a batch of cached results.
- Parameters:
- startint
The starting index of the results to retrieve. Returns an empty list if start is past the end of the cache.
- countint
The maximum number of results to retrieve. Returns fewer results if there are not enough in the cache.
- Returns:
- resultsList
A list of
Trajectory
objects for the cached results.
- Raises:
RunTimeError
if start < 0 or count <= 0.
- prepare_psi_phi(self: kbmod.search.StackSearch) None #
Compute the cached psi and phi data.
- search_all(self: kbmod.search.StackSearch, arg0: list[search::Trajectory], arg1: bool) None #
Perform the KBMOD search by evaluating a list of candidate trajectories at each starting pixel in the image. The results are stored in the
StackSearch
object and can be accessed with get_results().- Parameters:
- search_listlist
A list of Trajectory objects where each trajectory is evaluated at each starting pixel.
- on_gpubool
Run the search on the GPU.
- search_linear_trajectory(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsFloat, arg3: SupportsFloat, arg4: bool) search::Trajectory #
Performs the evaluation of a linear trajectory in pixel space.
- Parameters:
- xshort
The starting x pixel of the trajectory.
- yshort
The starting y pixel of the trajectory.
- vxfloat
The x velocity of the trajectory in pixels per day.
- vyfloat
The y velocity of the trajectory in pixels per day.
- use_kernelbool
Use the kernel code for evaluation. This requires the code is compiled with the nvidia libraries, but performs the exact same computations as on GPU.
- Returns:
- resultkb.Trajectory
The trajectory object with statistics set.
Notes
Runs on the CPU, but requires CUDA compiler.
- set_min_lh(self: kbmod.search.StackSearch, arg0: SupportsFloat) None #
Sets the minimum likelihood for valid result.
- Parameters:
- new_valuefloat
The minimum likelihood value for a trajectory to be returned.
- set_min_obs(self: kbmod.search.StackSearch, arg0: SupportsInt) None #
Sets the minimum number of observations for valid result.
- Parameters:
- new_valueint
The minimum number of valid observations for a trajectory to be returned.
- set_results(self: kbmod.search.StackSearch, arg0: list[search::Trajectory]) None #
Set the cached results. Used for testing.
- Parameters:
- new_resultsList
The list of results (
Trajectory
objects) to store.
- set_results_per_pixel(self: kbmod.search.StackSearch, arg0: SupportsInt) None #
Set the maximum number of results per pixel returns by a search.
- Parameters:
- new_valueint
The new number of results per pixel.
- Raises:
- Raises a
RunTimeError
if an invalid value is provided (new_value <= 0).
- Raises a
- set_start_bounds_x(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt) None #
Set the starting and ending bounds in the x direction for a grid search. The grid search will test all pixels [x_min, x_max).
- Parameters:
- x_minint
The inclusive lower bound of the search (in pixels).
- x_maxint
The exclusive upper bound of the search (in pixels).
- Raises:
- Raises a
RunTimeError
if invalid bounds are provided (x_max > x_min).
- Raises a
- set_start_bounds_y(self: kbmod.search.StackSearch, arg0: SupportsInt, arg1: SupportsInt) None #
Set the starting and ending bounds in the y direction for a grid search. The grid search will test all pixels [y_min, y_max).
- Parameters:
- y_minint
The inclusive lower bound of the search (in pixels).
- y_maxint
The exclusive upper bound of the search (in pixels).
- Raises:
- Raises a
RunTimeError
if invalid bounds are provided (x_max > x_min).
- Raises a
- class kbmod.search.StampType#
Bases:
pybind11_object
Members:
STAMP_SUM
STAMP_MEAN
STAMP_MEDIAN
STAMP_VAR_WEIGHTED
- Attributes:
name
name(self: object, /) -> str
- value
- property name#
- class kbmod.search.Trajectory#
Bases:
pybind11_object
A structure for holding basic information about potential results in the form of a linear trajectory in pixel space.
- Attributes:
- xfloat
x coordinate of the trajectory at first time step (in pixels)
- yfloat
y coordinate of the trajectory at first time step (in pixels)
- vxfloat
x component of the velocity, as projected on the image (in pixels per day)
- vyfloat
y component of the velocity, as projected on the image (in pixels per day)
- lhfloat
The computed likelihood of all (valid) points along the trajectory.
- fluxfloat
The computed likelihood of all (valid) points along the trajectory.
- obs_countint
The number of valid points along the trajectory.
Methods
get_x_index
(self, arg0)Returns the predicted x position of the trajectory as an integer (column) index.
get_x_pos
(self, time[, centered])Returns the predicted x position of the trajectory.
get_y_index
(self, arg0)Returns the predicted x position of the trajectory as an integer (row) index.
get_y_pos
(self, time[, centered])Returns the predicted y position of the trajectory.
is_close
(self, arg0, arg1, arg2)Checks whether a second Trajectory falls within given thresholds of closeness for pixel difference and velocity difference.
- get_x_index(self: kbmod.search.Trajectory, arg0: SupportsFloat) int #
Returns the predicted x position of the trajectory as an integer (column) index.
- Parameters:
- timefloat
A zero shifted time in days.
- Returns:
- int
The predicted column index.
- get_x_pos(self: kbmod.search.Trajectory, time: SupportsFloat, centered: bool = True) float #
Returns the predicted x position of the trajectory.
- Parameters:
- timefloat
A zero shifted time in days.
- centeredbool
Shift the prediction to be at the center of the pixel (e.g. xp = x + vx * time + 0.5f). Default = True.
- Returns:
- float
The predicted x position (in pixels).
- get_y_index(self: kbmod.search.Trajectory, arg0: SupportsFloat) int #
Returns the predicted x position of the trajectory as an integer (row) index.
- Parameters:
- timefloat
A zero shifted time in days.
- Returns:
- int
The predicted row index.
- get_y_pos(self: kbmod.search.Trajectory, time: SupportsFloat, centered: bool = True) float #
Returns the predicted y position of the trajectory.
- Parameters:
- timefloat
A zero shifted time in days.
- centeredbool
Shift the prediction to be at the center of the pixel (e.g. xp = x + vx * time + 0.5f). Default = True.
- Returns:
- float
The predicted y position (in pixels).
- is_close(self: kbmod.search.Trajectory, arg0: kbmod.search.Trajectory, arg1: SupportsFloat, arg2: SupportsFloat) bool #
Checks whether a second Trajectory falls within given thresholds of closeness for pixel difference and velocity difference.
- Parameters:
- trj_bTrajectory
The Trajectory to test.
- pos_threshfloat
The maximum separation in each of the x and y dimension (in pixels).
- vel_threshfloat
The maximum separation in each of the x and y velocities (in pixels/day).
- Returns:
- bool
Whether the two trajectories are close.
- class kbmod.search.TrajectoryList#
Bases:
pybind11_object
A list of trajectories that can be transferred between CPU or GPU.
- Attributes:
on_gpu
Whether the data currently resides on the GPU (True) or CPU (False)
Methods
estimate_memory
(self)Estimate the size of the list in bytes.
filter_by_likelihood
(self, arg0)Filter all trajectories with a likelihood above the given threshold.
filter_by_obs_count
(self, arg0)Filter all trajectories with an obs_count above the given threshold.
get_batch
(self, arg0, arg1)Return a batch of results.
get_list
(self)Return the full list of trajectories.
get_memory
(self)Return the size of the list in bytes.
get_size
(self)Return the size of the list in number of elements.
get_trajectory
(self, arg0)Get a reference trajectory from the list.
move_to_cpu
(self)Move the data from GPU to CPU.
move_to_gpu
(self)Move the data from CPU to GPU.
resize
(self, arg0)Forcibly resize the array.
set_trajectories
(self, arg0)Set an entire list of trajectories.
set_trajectory
(self, arg0, arg1)Set a trajectory in the list.
sort_by_likelihood
(self)Sort the data in order of decreasing likelihood.
- estimate_memory(self: SupportsInt) int #
Estimate the size of the list in bytes.
- Parameters:
- num_elementsint
The number of elements that will be in the list.
- Returns:
- sizeint
The number of bytes needed for the list on CPU and GPU.
- filter_by_likelihood(self: kbmod.search.TrajectoryList, arg0: SupportsFloat) None #
Filter all trajectories with a likelihood above the given threshold. Changes the order of the data and the size of the list. The data must reside on the CPU.
- Parameters:
- min_lhfloat
The minimum likelihood.
- Raises:
- Raises a
RuntimeError
the data is on GPU.
- Raises a
- filter_by_obs_count(self: kbmod.search.TrajectoryList, arg0: SupportsInt) None #
Filter all trajectories with an obs_count above the given threshold. Changes the order of the data and the size of the list. The data must reside on the CPU.
- Parameters:
- min_obs_countint
The minimum obs_count.
- Raises:
- Raises a
RuntimeError
the data is on GPU.
- Raises a
- get_batch(self: kbmod.search.TrajectoryList, arg0: SupportsInt, arg1: SupportsInt) list[kbmod.search.Trajectory] #
Return a batch of results. The data must reside on the CPU.
- Parameters:
- startint
The starting index of the results to retrieve. Returns an empty list if start is past the end of the cache.
- countint
The maximum number of results to retrieve. Returns fewer results if there are not enough in the cache.
- Returns:
- resultsList
A list of
Trajectory
objects for the cached results.
- Raises:
RunTimeError
if start < 0 or count <= 0 or if the data is on GPU.
- get_list(self: kbmod.search.TrajectoryList) list[kbmod.search.Trajectory] #
Return the full list of trajectories. The data must reside on the CPU.
- Returns:
- resultlist
The list of trajectories
- Raises:
- Raises a
RuntimeError
if the data currently resides on the GPU.
- Raises a
- get_memory(self: kbmod.search.TrajectoryList) int #
Return the size of the list in bytes.
- get_size(self: kbmod.search.TrajectoryList) int #
Return the size of the list in number of elements.
- get_trajectory(self: kbmod.search.TrajectoryList, arg0: SupportsInt) kbmod.search.Trajectory #
Get a reference trajectory from the list. The data must reside on the CPU.
- Parameters:
- indexint
The index of the entry.
- Returns:
- trjTrajectory
The corresponding Trajectory object.
- Raises:
- Raises a
RuntimeError
if the index is invalid or the data currently resides - on the GPU.
- Raises a
- move_to_cpu(self: kbmod.search.TrajectoryList) None #
Move the data from GPU to CPU. If the data is already on the CPU this is a no-op.
- Raises:
- Raises a
RuntimeError
if invalid state encountered.
- Raises a
- move_to_gpu(self: kbmod.search.TrajectoryList) None #
Move the data from CPU to GPU. If the data is already on the GPU this is a no-op.
- Raises:
- Raises a
RuntimeError
if invalid state encountered.
- Raises a
- property on_gpu#
Whether the data currently resides on the GPU (True) or CPU (False)
- resize(self: kbmod.search.TrajectoryList, arg0: SupportsInt) None #
Forcibly resize the array. If the size is decreased, the extra entries are dropped from the back. If the size is increased, extra (blank) trajectories are added to the back.
The data must reside on the CPU.
- Parameters:
- new_sizeint
The new size of the list.
- Raises:
RunTimeError
if new_size < 0 or data is on GPU.
- set_trajectories(self: kbmod.search.TrajectoryList, arg0: list[kbmod.search.Trajectory]) None #
Set an entire list of trajectories. Resizes the array to match the given input. The data must reside on the CPU.
- Parameters:
- new_valueslist
A list of Trajectory objects.
- Raises:
- Raises a
RuntimeError
if the index is invalid or the data currently resides - on the GPU.
- Raises a
- set_trajectory(self: kbmod.search.TrajectoryList, arg0: SupportsInt, arg1: kbmod.search.Trajectory) None #
Set a trajectory in the list. The data must reside on the CPU.
- Parameters:
- indexint
The index of the entry.
- new_valueTrajectory
The corresponding Trajectory object.
- Raises:
- Raises a
RuntimeError
if the index is invalid or the data currently resides - on the GPU.
- Raises a
- sort_by_likelihood(self: kbmod.search.TrajectoryList) None #
Sort the data in order of decreasing likelihood. The data must reside on the CPU.
- Raises:
- Raises a
RuntimeError
the data is on GPU.
- Raises a
- kbmod.search.anchored_block(arg0: tuple[SupportsInt, SupportsInt], arg1: SupportsInt, arg2: tuple[SupportsInt, SupportsInt]) kbmod.search.Rectangle #
Returns rectangle selection of an array centered on given coordinate.
- Parameters:
- idxtuple
Center of the rectangle selection, indices
(row, col)
.- rint
Radius around the central index to select.
- shapeint
Shape of the origin array.
- Returns:
- rectRectangle
Selected rectangle, such that the corner + width/height returns the desired array slice.
Examples
>>> img = numpy.arange(100).reshape(10, 10) >>> rect = anchored_block((5, 5), 1, img.shape) >>> rect Rectangle(corner: (4, 4), anchor: (0, 0), width: 3, height: 3) >>> stamp = img[rect.i:rect.i+rect.height, rect.j:rect.j+width] >>> stamp array([[44, 45, 46], [54, 55, 56], [64, 65, 66]])
By default, anchor is calculated such that it fits into a destination with a shape
(2r+1, 2r+1)
, i.e.(rect.width, rect.height)
. Note the requested radius clips to the left and top of the array.>>> dest = np.zeros((3, 3)) - 1 >>> rect = anchored_block((0, 0), 1, img.shape) >>> dest[rect.anchor.i:, rect.anchor] = stamp array([[-1., -1., -1.], [-1., 0., 1.], [-1., 10., 11.]])
- kbmod.search.centered_range(arg0: SupportsInt, arg1: SupportsInt, arg2: SupportsInt) tuple[int, int, int] #
Given a reference value and a radius around it, returns the range start, end and length that fit into the width of the interval.
The returned range is [val-r, val+r].
- Parameters:
- valint
Center of the returned range.
- rint
Radius around the center to select.
- widthint
Maximum allowed width of the interval.
- Returns:
- intervaltuple
The triplet (start, end, length) = [val-r, val+r, 2r+1] trimmed to fit within [0, width] range.
Examples
Interval of radius 1, centered on 5, i.e. [4, 5, 6]:
>>> centered_range(5, 1, 10) (4, 6, 3)
Interval of radius 2, centered on 1, this time the allowed range [0, width] clips the returned range, i.e. [0, 1, 2, 3]
>>> centered_range(1, 2, 10) (0, 3, 4)
- kbmod.search.compute_scale_params_from_image_vect(arg0: list[Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']], arg1: SupportsInt) Annotated[list[float], FixedSize(3)] #
- kbmod.search.convolve_image(arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]'], arg1: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Convolves the image (in place) with a PSF using a CPU if one is available and a GPU otherwise.
- Parameters:
- imagenumpy.ndarray
The image data as a two dimensional array.
- psfnumpy.ndarray
The kernel of the Point Spread Function as a two dimensional array.
- Returns:
- resultnumpy.ndarray
The resulting image.
- kbmod.search.convolve_image_cpu(arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]'], arg1: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Convolve the image with a PSF on the CPU.
- Parameters:
- imagenumpy.ndarray
The image data as a two dimensional array.
- psfnumpy.ndarray
The kernel of the Point Spread Function as a two dimensional array.
- Returns:
- resultnumpy.ndarray
The resulting image.
- kbmod.search.convolve_image_gpu(arg0: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]'], arg1: Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']) Annotated[numpy.typing.NDArray[numpy.float32], '[m, n]'] #
Convolve the image with a PSF on the GPU.
- Parameters:
- imagenumpy.ndarray
The image data as a two dimensional array.
- psfnumpy.ndarray
The kernel of the Point Spread Function as a two dimensional array.
- Returns:
- resultnumpy.ndarray
The resulting image.
- kbmod.search.decode_uint_scalar(arg0: SupportsFloat, arg1: SupportsFloat, arg2: SupportsFloat) float #
- kbmod.search.encode_uint_scalar(arg0: SupportsFloat, arg1: SupportsFloat, arg2: SupportsFloat, arg3: SupportsFloat) float #
- kbmod.search.evaluate_trajectory_cpu(arg0: search::PsiPhiArray, arg1: search::Trajectory) None #
- kbmod.search.fill_psi_phi_array(arg0: kbmod.search.PsiPhiArray, arg1: SupportsInt, arg2: list[Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']], arg3: list[Annotated[numpy.typing.ArrayLike, numpy.float32, '[m, n]']], arg4: list[SupportsFloat]) None #
Fill the PsiPhiArray from Psi and Phi images.
- Parameters:
- result_dataPsiPhiArray
The location to store the data.
- num_bytesint
The type of encoding to use (1, 2, or 4).
- psi_imgslist
A list of psi images as numpy arrays.
- phi_imgslist
A list of phi images as numpy arrays.
- zeroed_timeslist
A list of floating point times starting at zero.
- Raises:
- Raises a RuntimeError if invalid values are found in the psi or phi arrays.
- kbmod.search.fill_psi_phi_array_from_image_stack(arg0: kbmod.search.PsiPhiArray, arg1: kbmod.search.ImageStack, arg2: SupportsInt) None #
Fill the PsiPhiArray an ImageStack.
- Parameters:
- result_dataPsiPhiArray
The location to store the data.
- num_bytesint
The type of encoding to use (1, 2, or 4).
- stackImageStack
The stack of LayeredImages from which to build the psi and phi images.
- Raises:
- Raises a RuntimeError if invalid values are found.
- kbmod.search.get_gpu_free_memory() int #
Return the GPUs free memory in bytes.
- kbmod.search.get_gpu_total_memory() int #
Return the GPUs total memory in bytes.
- kbmod.search.pixel_value_valid(arg0: SupportsFloat) bool #
- kbmod.search.print_cuda_stats() None #
Display the basic GPU information to standard out.
- kbmod.search.search_cpu_only(arg0: search::PsiPhiArray, arg1: search::SearchParameters, arg2: search::TrajectoryList, arg3: search::TrajectoryList) None #
- kbmod.search.sigmag_filtered_indices(arg0: list[SupportsFloat], arg1: SupportsFloat, arg2: SupportsFloat, arg3: SupportsFloat, arg4: SupportsFloat) list[int] #
- kbmod.search.stat_gpu_memory_mb() str #
Create a minimal GPU stats string for debugging.
- kbmod.search.validate_gpu(req_memory: SupportsInt = 0) bool #
Check that a GPU is present, accessible, and has sufficient memory.
- Parameters:
- req_memoryint
The minimum free memory in bytes. Default: 0
- Returns:
- bool
Indicates whether the GPU is valid.