Module: trajectory_explorer#
- class kbmod.trajectory_explorer.TrajectoryExplorer(im_stack, config=None, preload_data=False)[source]#
- A class to interactively run test trajectories through KBMOD. - Attributes:
- clipperSigmaGClipping
- The sigma-G clipping object. 
- configSearchConfiguration
- The configuration parameters. 
- im_stackImageStackPy
- The images to search. 
- preload_databool
- If - Truepreload all the image data into memory.
- searchkb.StackSearch
- The search object (with cached data). 
 
 - Methods - apply_sigma_g(result)- Apply sigma G clipping to a single ResultRow. - evaluate_angle_trajectory(ra, dec, v_ra, ...)- Evaluate a single linear trajectory in angle space. - evaluate_around_linear_trajectory(x, y, vx, vy)- Evaluate all the trajectories within a local neighborhood of the given trajectory. - evaluate_linear_trajectory(x, y, vx, vy, ...)- Evaluate a single linear trajectory in pixel space. - initialize_data([config])- Initialize the data, including applying the configuration parameters. - refine_linear_trajectory(x, y, vx, vy, *[, ...])- Evaluate all trajectories within a local neighborhood of the given trajectory (applying standard filtering) and return the best one. - apply_sigma_g(result)[source]#
- Apply sigma G clipping to a single ResultRow. Modifies the row in-place. - Parameters:
- resultResults
- A table of results to test. 
 
 
 - evaluate_angle_trajectory(ra, dec, v_ra, v_dec, wcs, use_kernel)[source]#
- Evaluate a single linear trajectory in angle space. Skips all the filtering steps and returns the raw data. - Parameters:
- rafloat
- The right ascension at time t0 (in degrees) 
- decfloat
- The declination at time t0 (in degrees) 
- v_rafloat
- The velocity in RA at t0 (in degrees/day) 
- v_decfloat
- The velocity in declination at t0 (in degrees/day) 
- wcsastropy.wcs.WCS
- The WCS for the images. 
- use_kernelbool
- Force the use of the exact kernel code (including on GPU-sigma G). 
 
- Returns:
- resultResults
- The results table with a single row and all the columns filled out. 
 
 
 - evaluate_around_linear_trajectory(x, y, vx, vy, pixel_radius=5, max_ang_offset=0.2618, ang_step=0.035, max_vel_offset=10.0, vel_step=0.5, use_gpu=True)[source]#
- Evaluate all the trajectories within a local neighborhood of the given trajectory. No filtering is done at all. - Parameters:
- xint
- The starting x pixel of the trajectory. 
- yint
- The starting y pixel of the trajectory. 
- vxfloat
- The x velocity of the trajectory in pixels per day. 
- vyfloat
- The y velocity of the trajectory in pixels per day. 
- pixel_radiusint
- The number of pixels to evaluate to each side of the Trajectory’s starting pixel. 
- max_ang_offsetfloat
- The maximum offset of a candidate trajectory from the original (in radians) 
- ang_stepfloat
- The step size to explore for each angle (in radians) 
- max_vel_offsetfloat
- The maximum offset of the velocity’s magnitude from the original (in pixels per day) 
- vel_stepfloat
- The step size to explore for each velocity magnitude (in pixels per day) 
- use_gpubool
- Run the search on GPU. 
 
- Returns:
- resultResults
- The results table with a single row and all the columns filled out. 
 
 
 - evaluate_linear_trajectory(x, y, vx, vy, use_kernel)[source]#
- Evaluate a single linear trajectory in pixel space. Skips all the filtering steps and returns the raw data. - Parameters:
- xint
- The starting x pixel of the trajectory. 
- yint
- The starting y pixel of the trajectory. 
- vxfloat
- The x velocity of the trajectory in pixels per day. 
- vyfloat
- The y velocity of the trajectory in pixels per day. 
- use_kernelbool
- Force the use of the exact kernel code (including on GPU-sigma G). 
 
- Returns:
- resultResults
- The results table with a single row and all the columns filled out. 
 
 
 - initialize_data(config=None)[source]#
- Initialize the data, including applying the configuration parameters. - Parameters:
- configSearchConfiguration, optional
- Any custom configuration parameters to use for this run. If - Noneuses the default configuration parameters.
 
 
 - refine_linear_trajectory(x, y, vx, vy, *, pixel_radius=50, max_dv=10.0, dv_steps=21, max_results=1, use_gpu=True)[source]#
- Evaluate all trajectories within a local neighborhood of the given trajectory (applying standard filtering) and return the best one. - Parameters:
- xint
- The starting x pixel of the trajectory. 
- yint
- The starting y pixel of the trajectory. 
- vxfloat
- The x velocity of the trajectory in pixels per day. 
- vyfloat
- The y velocity of the trajectory in pixels per day. 
- pixel_radiusint
- The number of pixels to evaluate to each side of the Trajectory’s starting pixel. 
- max_dvfloat
- The maximum change in per-coordinate pixel velocity to explore (in pixels/day) 
- dv_steps: `int`
- The number of steps to explore in each velocity dimension. 
- max_resultsint
- The maximum number of results to return. 
- use_gpubool
- Run the search on GPU. 
 
- Returns:
- resultResults
- The results table with a single row and all the columns filled out. 
 
 
 
- kbmod.trajectory_explorer.refine_all_results(results, im_stack, config, *, deduplicate=True, pixel_radius=50, max_dv=10.0, dv_steps=21)[source]#
- Refine the trajectories in results by re-running the search in a small neighborhood around each trajectory. - Parameters:
- resultsResults
- The current table of results including the per-pixel trajectories. This is modified in-place. 
- im_stackImageStackPy
- The stack of image data. 
- configSearchConfiguration
- The configuration parameters 
- deduplicatebool, optional
- If True, remove duplicate trajectories after refinement (this includes any trajectories whose start and end points are within the pixel radius). 
- pixel_radiusint
- The number of pixels to evaluate to each side of the Trajectory’s starting pixel. 
- max_dvfloat
- The maximum change in per-coordinate pixel velocity to explore (in pixels/day) 
- dv_steps: `int`
- The number of steps to explore in each velocity dimension. 
 
- Returns:
- refinedResults
- A new Results object with the refined trajectories.